Треугольники А0Д и В0С - подобные (уг.В0С = уг.А0Д как вертикальные; уг.СВ0 = уг.АД0 как внутренние накрест лежащие при параллельных прямых АД и ВС и секущей ВД).
Площадь тр-ка ВОС равна S1 = 0,5ВС·Н1
Площадь тр-ка АОД равна S2 = 0,5АД·Н2
При этом Н1:Н2 = к -коэфиициент подобия, а S1 : S2 = к²
S1 : S2 = 0,5ВС·Н1 : 0,5АД·Н2
к² = к· ВС: АД
к = 9/16
Итак, нашли коэффициент подобия.
Из подобия тех же тр-ков следует, что ОВ:ОД = 9/16, но ОД = АС - ОВ и
Площадь треугольника АСD по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны. В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14. S=(1/2)*h*AD, отсюда высота треугольника АСD равна h=2S/AD=(2√14)/3. Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3. Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3. По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1. ответ: S=26√14/9 ≈ 12,1.
Треугольники А0Д и В0С - подобные (уг.В0С = уг.А0Д как вертикальные; уг.СВ0 = уг.АД0 как внутренние накрест лежащие при параллельных прямых АД и ВС и секущей ВД).
Площадь тр-ка ВОС равна S1 = 0,5ВС·Н1
Площадь тр-ка АОД равна S2 = 0,5АД·Н2
При этом Н1:Н2 = к -коэфиициент подобия, а S1 : S2 = к²
S1 : S2 = 0,5ВС·Н1 : 0,5АД·Н2
к² = к· ВС: АД
к = 9/16
Итак, нашли коэффициент подобия.
Из подобия тех же тр-ков следует, что ОВ:ОД = 9/16, но ОД = АС - ОВ и
ОВ: (АС - ОВ) = 9/16
16·ОВ = 9·(АС - ОВ)
16·ОВ = 9·АС - 9·ОВ
25·ОВ = 9·АС
ОВ = 9·АС/25 = 9·18:25 = 6,48
ответ: ОВ = 6,48см
Объяснение:
S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b,c - стороны.
В нашем случае р=14:2=7, тогда S=√(7*1*2*4) = 2√14.
S=(1/2)*h*AD, отсюда высота треугольника АСD равна
h=2S/AD=(2√14)/3.
Тогда катет HD по Пифагору равен HD=√(CD²-h²)=√(9-56/9)=5/3.
Следовательно, отрезок АН=6-5/3=(18-5)/3=13/3.
По свойству высоты, опущенной из тупого угла на большее основание равнобокой трапеции, отрезок АН равен полусумме оснований трапеции. Тогда ее площадь равна
S=АН*h=(13/3)*(2√14)/3=26√14/9 ≈ 12,1.
ответ: S=26√14/9 ≈ 12,1.