Обозначим длину биссектрисы через х. один из острых углов через а , второй тогда 90-а. биссектрисса делит треугольник на два. теорема синусов для обоих треугольников. х/sin a = 15/ sin 45. x/ sin(90-a) = 20/ sin 45 sin 90-a= cos a откуда 15 sin a = 20 cos a tg a = 4/3 гипотенуза 35 катеты 28 и 21 пифагоров треугольник 3 4 5 с коэффициентом подобия 7. опустим высоту на гипотенузу. если tg a = 4/3 , то sin a = 4/5 cos a = 3/5. опять же из пифагорова треугольника. гипотенуза поделиться высотой на отрезки 21 * cos a = 12.6 28* cos(90-a)= 28* sin a= 22.4
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
один из острых углов через а , второй тогда 90-а.
биссектрисса делит треугольник на два.
теорема синусов для обоих треугольников.
х/sin a = 15/ sin 45.
x/ sin(90-a) = 20/ sin 45
sin 90-a= cos a
откуда
15 sin a = 20 cos a
tg a = 4/3
гипотенуза 35 катеты 28 и 21
пифагоров треугольник 3 4 5 с коэффициентом подобия 7.
опустим высоту на гипотенузу.
если tg a = 4/3 , то sin a = 4/5 cos a = 3/5.
опять же из пифагорова треугольника.
гипотенуза поделиться высотой на отрезки
21 * cos a = 12.6
28* cos(90-a)= 28* sin a= 22.4