Сумма противолежащих углов вписанного четырехугольника равна 180°. Четырехугольник АВСD - вписанный, ⇒ ∠ВАD+∠BСD=180°. Угол ВАL - развернутый. Сумма смежных углов равна 180°. ⇒ ∠BАD +∠LAD =180°. На приложенном рисунке ∠ LAD обозначен как 1, а ∠KCD – 2. Следовательно, угол С =∠1.
Рассмотрим треугольники АLD и СКD. Вертикальные углы при D равны – Вычтя их из суммы углов треугольника, получим <1+<L=<2+<K. По условию <K-< L=60°. ⇒ ∠К=60°+<L Заменим в предыдущем уравнении угол К найденным значением: ∠1+∠L=<2+60°+∠L, откуда ∠1=∠2+60°. Равный углу 1 ∠С=∠2+60° , ⇒ ∠2=∠С-60°, поэтому ∠С-60°+∠С=180°, ⇒ 2С=240°, ∠С=120° и, следовательно, угол ВАD=60°
Сумма противолежащих углов вписанного четырехугольника равна 180°. Четырехугольник АВСD - вписанный, ⇒ ∠ВАD+∠BСD=180°. Угол ВАL - развернутый. Сумма смежных углов равна 180°. ⇒ ∠BАD +∠LAD =180°. На приложенном рисунке ∠ LAD обозначен как 1, а ∠KCD – 2. Следовательно, угол С =∠1.
Рассмотрим треугольники АLD и СКD. Вертикальные углы при D равны – Вычтя их из суммы углов треугольника, получим <1+<L=<2+<K. По условию <K-< L=60°. ⇒ ∠К=60°+<L Заменим в предыдущем уравнении угол К найденным значением: ∠1+∠L=<2+60°+∠L, откуда ∠1=∠2+60°. Равный углу 1 ∠С=∠2+60° , ⇒ ∠2=∠С-60°, поэтому ∠С-60°+∠С=180°, ⇒ 2С=240°, ∠С=120° и, следовательно, угол ВАD=60°
ответ:Cм рисунок в приложении. Проведем высоты вы трапеции из вершин верхнего основания. Обозначим нижнее основание и боковые стороны х
Из прямоугольных треугольников находим катет
Катет равен гипотенузе х, умноженной на косинус 65°
(если бы 60°, то косинус 60° равен 0,5)
Тогда нижнее основание состоит их трех отрезков:
х·cos 65°+x+x·cos 65°=16 ⇒ x=16:(2cos 65°+`1)
cos 65°≈ 0,423
0,423х+х+0,423х=16
1,846 х=16
х≈8,67
Р≈8,67+8.67+8.67+16=42,01
Если все-таки 60° угол, то все гораздо проще:
0,5х+х+0,5х=16
2х=16
х=8
Р=8+8+8+16=40