На одной прямой на равном расстоянии друг от друга стоят три телеграфных столба. крайние находятся от дороги на расстояниях 24м и 58м. найдите расстояние от дороги, на котором находится средний столб.
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Объяснение:
1)в<с отнимем от обеих частей неравенства 7,9
в−7,9<c−7,9 - неравенство ВЕРНО.
2)в<с умножим обе части неравенства на -7,9 (знак повернётся)
−7,9в>−7,9c - неравенство ВЕРНО.
3)в<c умножим обе части неравенства на 7,9
7,9в<7,9c - неравенство ВЕРНО.
4)в<c умножим обе части неравенства на -1 (знак повернётся)
-в>-с прибавим к обеим частям неравенства 7,9
7,9-в>7,9-с - неравенство НЕВЕРНО.
5)в<c прибавим к обеим частям неравенства 7,9
в+7,9<c+7,9 - неравенство ВЕРНО.
Если Вы учитесь в 6 классе, думаю, достаточно будет ответов "верно-неверно", а если в 9 классе, то опишите каждый шаг.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.