На окружности отмечены две точки А и В, они делят окружность на две дуги. Градусная мера одной из них в 2 раза меньше градусной меры другой дуги. Найдите градусную меру большей дуги. (в ответ запишите число без единиц измерения)
Сделать чертёж. Разделить сторону ВС на 4 части. Обозначить на расстоянии 1 от точки В точку N. Тогда BN=1, NC=3. Провести прямую MN согласно условию. Параллельно ей провести из точки А прямую , которая пересечёт сторону ВС в точке Р. Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам. Но NC=3, значит, NP=1,5. Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ. ответ: 2:3
Объяснение: Точка M равноудалена от всех вершин данного треугольника, следовательно, все наклонные из М к вершинам, а, значит, и к плоскости треугольника, равны, поэтому равны и их проекции ОС=ОВ=ОА и равны радиусу описанной около ∆ АВС окружности.
Искомое расстояние МС - гипотенуза прямоугольного ⊿ МОС. Для её нахождения нужно найти катет ОС этого треугольника. ОС=R.
Формула радиуса описанной окружности R=a•b•c/4S ( где а, b и с - стороны треугольника).
S=BD•AC:2=9•6:2=27
Боковые стороны ∆ (АВС) найдём из ⊿ АВD. Высота ВD в равнобедренном треугольнике ещё и медиана (свойство)
Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам.
Но NC=3, значит, NP=1,5.
Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ.
ответ: 2:3
ответ: l²=34
Объяснение: Точка M равноудалена от всех вершин данного треугольника, следовательно, все наклонные из М к вершинам, а, значит, и к плоскости треугольника, равны, поэтому равны и их проекции ОС=ОВ=ОА и равны радиусу описанной около ∆ АВС окружности.
Искомое расстояние МС - гипотенуза прямоугольного ⊿ МОС. Для её нахождения нужно найти катет ОС этого треугольника. ОС=R.
Формула радиуса описанной окружности R=a•b•c/4S ( где а, b и с - стороны треугольника).
S=BD•AC:2=9•6:2=27
Боковые стороны ∆ (АВС) найдём из ⊿ АВD. Высота ВD в равнобедренном треугольнике ещё и медиана (свойство)
По т.Пифагора. АВ=√(BD²+AD²)=√(9²+3²)=√90
R=(√90•√90•6):4•27= 5
ОС=5 ⇒ МС²=(MO²+OC²)=3²+5²=34 ⇒ l²=34