На окружности с центром в точке О лежат точки M, N и K так, что хорда MN = 6 см, а хорда NK = 9 см. Периметр треугольника MОN равен 20 см. Найди периметр треугольника NOK.
Если диаметр окружности с центром в точке О образует с хордой ВС угол 30°, то
А. треугольник СОВ - равносторонний - НЕ ВЕРНО
В равностороннем треугольнике все углы по 60°, а в треугольнике СОВ ∠В=30°.
Б. ∠ОСВ = 30° - ВЕРНО
В треугольнике СОВ равны две стороны : ОВ=ОС - это радиусы окружности. Значит, ΔСОВ равнобедренный. В равнобедренном треугольнике углы при основании равны : ∠ОСВ=∠В=30°
В. ∠СОА = 50° - НЕ ВЕРНО
∠СОА - внешний угол треугольника ОСВ равен сумме двух внутренних углов, не смежных с ним :
Если диаметр окружности с центром в точке О образует с хордой ВС угол 30°, то
А. треугольник СОВ - равносторонний - НЕ ВЕРНО
В равностороннем треугольнике все углы по 60°, а в треугольнике СОВ ∠В=30°.
Б. ∠ОСВ = 30° - ВЕРНО
В треугольнике СОВ равны две стороны : ОВ=ОС - это радиусы окружности. Значит, ΔСОВ равнобедренный. В равнобедренном треугольнике углы при основании равны : ∠ОСВ=∠В=30°
В. ∠СОА = 50° - НЕ ВЕРНО
∠СОА - внешний угол треугольника ОСВ равен сумме двух внутренних углов, не смежных с ним :
Если диаметр окружности с центром в точке О образует с хордой ВС угол 30°, то
А. треугольник СОВ - равносторонний - НЕ ВЕРНО
В равностороннем треугольнике все углы по 60°, а в треугольнике СОВ ∠В=30°.
Б. ∠ОСВ = 30° - ВЕРНО
В треугольнике СОВ равны две стороны : ОВ=ОС - это радиусы окружности. Значит, ΔСОВ равнобедренный. В равнобедренном треугольнике углы при основании равны : ∠ОСВ=∠В=30°
В. ∠СОА = 50° - НЕ ВЕРНО
∠СОА - внешний угол треугольника ОСВ равен сумме двух внутренних углов, не смежных с ним :
∠СОА = ∠ОСВ + ∠В = 30° + 30° = 60°
ответ : Б, ∠ОСВ = 30°
Если диаметр окружности с центром в точке О образует с хордой ВС угол 30°, то
А. треугольник СОВ - равносторонний - НЕ ВЕРНО
В равностороннем треугольнике все углы по 60°, а в треугольнике СОВ ∠В=30°.
Б. ∠ОСВ = 30° - ВЕРНО
В треугольнике СОВ равны две стороны : ОВ=ОС - это радиусы окружности. Значит, ΔСОВ равнобедренный. В равнобедренном треугольнике углы при основании равны : ∠ОСВ=∠В=30°
В. ∠СОА = 50° - НЕ ВЕРНО
∠СОА - внешний угол треугольника ОСВ равен сумме двух внутренних углов, не смежных с ним :
∠СОА = ∠ОСВ + ∠В = 30° + 30° = 60°
ответ : Б, ∠ОСВ = 30°