Для построения нам понадобится знание некоторых фактов.
1. расстояние от вершины C треугольника ABC до точек касания вписанной окружности со сторонами AC и BC равно p-c, где p - полупериметр, а c=AB. Тем самым, это расстояние равно
p-c=(a+b-c)/2=(m-c)/2
2. Расстояние от вершины C треугольника ABC до точек касания вневписанной окружности с продолжениями сторон AC и BC равно p. Тем самым, это расстояние равно
p=(a+b+c)/2=(m+c)/2
Дальше все просто. Рисуем прямой угол с вершиной C, откладываем на сторонах угла отрезки (m-c)/2 - получаем точки A' и B'. Центр I вписанной окружности будет четвертой вершиной квадрата A'CB'I. Рисуем эту окружность. Далее аналогично рисуем еще один квадрат - A''CB''J со стороной (m+c)/2; J - центр вневписанной окружности. Рисуем эту окружность. Остается провести общую внутреннюю касательную для нарисованных окружностей, она отсечет от угла с вершиной C нужный треугольник ABC.
Замечание 1. Что означает метод спрямления - мне неизвестно. Если я случайно именно им и воспользовался - прекрасно. Если мой метод не подойдет - жалуйтесь начальству))
Замечание 2. Как рисовать общие касательные для двух окружностей - тема отдельного вопроса. Готов ответить на него за минимальное количество или бесплатно в комментариях
ответ:
объяснение:
найти угол между прямой 2x+3y-1=0 и прямой проходящей через точки
m₁ (-1; 2) и m ₂(0; 3) .
уравнение прямой проходящей через точки m₁ (-1; 2) и m ₂(0; 3) :
y - 2 = ( 3 - 2 ) /(0 -(-1) *( x -(-1))⇔ x - y +3 = 0
найдем yгол α между прямой 2x+3y - 1=0 и прямой x - y +3 = 0 :
cosα = |a₁a₂ +b₁b₂| /√( a₁² +b₁²) * √(a₂² +b₂²) =
|2*1 +3*(-1)| /√( 2² +3²) * √(1² +(-1)²) = 1 /√ 13 * √2 ;
cosα = 1/ √26 ; α =arc cos 1/ √26
1. расстояние от вершины C треугольника ABC до точек касания вписанной окружности со сторонами AC и BC равно p-c, где p - полупериметр, а c=AB. Тем самым, это расстояние равно
p-c=(a+b-c)/2=(m-c)/2
2. Расстояние от вершины C треугольника ABC до точек касания вневписанной окружности с продолжениями сторон AC и BC равно p. Тем самым, это расстояние равно
p=(a+b+c)/2=(m+c)/2
Дальше все просто. Рисуем прямой угол с вершиной C, откладываем на сторонах угла отрезки (m-c)/2 - получаем точки A' и B'. Центр I
вписанной окружности будет четвертой вершиной квадрата A'CB'I. Рисуем эту окружность. Далее аналогично рисуем еще один квадрат - A''CB''J со стороной (m+c)/2; J - центр вневписанной окружности. Рисуем эту окружность. Остается провести общую внутреннюю касательную для нарисованных окружностей, она отсечет от угла с вершиной C нужный треугольник ABC.
Замечание 1. Что означает метод спрямления - мне неизвестно. Если я случайно именно им и воспользовался - прекрасно. Если мой метод не подойдет - жалуйтесь начальству))
Замечание 2. Как рисовать общие касательные для двух окружностей - тема отдельного вопроса. Готов ответить на него за минимальное количество или бесплатно в комментариях