Цитата: "Чтобы разложить, вектор a по базисным векторам b1, ..., bn, необходимо найти коэффициенты x1, ..., xn, при которых линейная комбинация векторов b1, ..., bn равна вектору a: x1b1 + ... + xnbn = a, при этом коэффициенты x1, ..., xn, называются координатами вектора a в базисе b1, ..., bn."
Даны вектора a{-3;5} b{2;-3} c{2;10}.
Разложить вектор а{-3;5} по базисным векторам b{2,-3} и c{2;10}. Векторное уравнение xb+yc=a записываем в виде системы линейных уравнений: 2x+2y=-3|*5 -3x+10y=5 => 13x=-20 и х=-20/13. 60+130y=65 => y=5/130=1/26. ответ: вектор а=-(20/13)b+(1/26)*c.
Разложить вектор b{2,-3} по базисным векторам а{-3;5} и c{2;10}. Векторное уравнение xa+yc=b записываем в виде системы линейных уравнений: -3x+2y=2 |*5 5x+10y=-3 => -20x=13 и х=-13/20=-0,65. -3,25+10y=-3 => y=0,025. ответ: вектор b=-0,65a+0,025c.
Разложить вектор c{2,10} по базисным векторам а{-3;5} и b{2;-3}. Векторное уравнение xa+yb=c записываем в виде системы линейных уравнений: -3x+2y=2 |*3 5x-3y=10 |*2 => x=26. 130-3y=10 => y=40. ответ: вектор c=26a+40b.
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
x1b1 + ... + xnbn = a,
при этом коэффициенты x1, ..., xn, называются координатами вектора a в базисе b1, ..., bn."
Даны вектора a{-3;5} b{2;-3} c{2;10}.
Разложить вектор а{-3;5} по базисным векторам b{2,-3} и c{2;10}.
Векторное уравнение xb+yc=a записываем в виде системы линейных уравнений:
2x+2y=-3|*5
-3x+10y=5 => 13x=-20 и х=-20/13.
60+130y=65 => y=5/130=1/26.
ответ: вектор а=-(20/13)b+(1/26)*c.
Разложить вектор b{2,-3} по базисным векторам а{-3;5} и c{2;10}.
Векторное уравнение xa+yc=b записываем в виде системы линейных уравнений:
-3x+2y=2 |*5
5x+10y=-3 => -20x=13 и х=-13/20=-0,65.
-3,25+10y=-3 => y=0,025.
ответ: вектор b=-0,65a+0,025c.
Разложить вектор c{2,10} по базисным векторам а{-3;5} и b{2;-3}.
Векторное уравнение xa+yb=c записываем в виде системы линейных уравнений:
-3x+2y=2 |*3
5x-3y=10 |*2 => x=26.
130-3y=10 => y=40.
ответ: вектор c=26a+40b.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.