В основании прямоугольного параллелепипеда прямоугольник со сторонами 15 и 20. По теореме Пифагора найдем диагональ прямоугольника (х) x^2=15^2+20^2=225+400=625 x=25 Из условия задачи диагональ параллелепипеда образует с боковым ребром и диагональю основания равнобедренный прямоугольный треугольник, значит боковое ребро равно диагонали прямоугольника и равно 25 Объем параллелепипеда (V) равен произведению площади основания на боковое ребро Площадь основания равна произведению сторон, и равна 15*20=300 V=300*25=7500
Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
x^2=15^2+20^2=225+400=625
x=25
Из условия задачи диагональ параллелепипеда образует с боковым ребром и диагональю основания равнобедренный прямоугольный треугольник, значит боковое ребро равно диагонали прямоугольника и равно 25
Объем параллелепипеда (V) равен произведению площади основания на боковое ребро
Площадь основания равна произведению сторон, и равна 15*20=300
V=300*25=7500