В треуг.АВС проведем медианы( они же высоты) АК,СD,ВР Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота АК делит сторону ВС пополам. ВС=ВК+КС ВК=КС=3:2=1,5 - катет АС=3 - гипотенуза Находим катет АК (теор.Пифагора): АК2=АС2 - КС2 АК2=3*3 - 1,5*1,5 АК=корень из 6,75 АК=2,598 Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1 АО+ОК=3(части) - составляют 2,598 АО=2части, АО=2,598:3*2=1,732 Рассмотрим треуг.АОМ ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС Находим АМ(теор.Пифагора): АМ2=АО2+ОМ2 Ом=1;АО=1,732; АМ2=1*1+1,732*1,732 АМ=корень из 4 АМ=2 Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому
1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота
АК делит сторону ВС пополам.
ВС=ВК+КС
ВК=КС=3:2=1,5 - катет
АС=3 - гипотенуза
Находим катет АК (теор.Пифагора):
АК2=АС2 - КС2
АК2=3*3 - 1,5*1,5
АК=корень из 6,75
АК=2,598
Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1
АО+ОК=3(части) - составляют 2,598
АО=2части, АО=2,598:3*2=1,732
Рассмотрим треуг.АОМ
ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный
АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС
Находим АМ(теор.Пифагора):
АМ2=АО2+ОМ2
Ом=1;АО=1,732;
АМ2=1*1+1,732*1,732
АМ=корень из 4
АМ=2
Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому
ХироХамаки Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.