на плоскости провели 10 прямых, только 2 из которых параллельны. В скольких точках эти прямые пересекают друг друга, если никакие 3 из них не проходят через одну точку?
Пусть дан четырёхугольник АВСD. Точка К - середина АВ, т.М - середина ВС, N и Т - середины СD и DA соответсвенно. По условию КN=ТМ. Проведем диагонали АС и ВD. Соединим середины сторон треугольников АВС, ВСD, CDA и DAB. В треугольниках АВС и АDC средние линии параллельны и равны половине диагонали АС исходного четырехугольника.⇒ КМ параллельна и равна ТN. Аналогично доказывается КТ=МN. Противоположные стороны КМNТ параллельны и равны. КМNТ - параллелограмм с равными диагоналями ( КN=МТ по условию), т.е. КМNТ - прямоугольник. А раз стороны КМNТ пересекаются под прямым углом, то и диагонали четырехугольника АВСD, которым они параллельны, также пересекаются под прямым углом, ч.т.д.
Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.
Пусть дан четырёхугольник АВСD. Точка К - середина АВ, т.М - середина ВС, N и Т - середины СD и DA соответсвенно. По условию КN=ТМ. Проведем диагонали АС и ВD. Соединим середины сторон треугольников АВС, ВСD, CDA и DAB. В треугольниках АВС и АDC средние линии параллельны и равны половине диагонали АС исходного четырехугольника.⇒ КМ параллельна и равна ТN. Аналогично доказывается КТ=МN. Противоположные стороны КМNТ параллельны и равны. КМNТ - параллелограмм с равными диагоналями ( КN=МТ по условию), т.е. КМNТ - прямоугольник. А раз стороны КМNТ пересекаются под прямым углом, то и диагонали четырехугольника АВСD, которым они параллельны, также пересекаются под прямым углом, ч.т.д.
Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.