На плоскости расположен пятиугольник ABCDE такой, что ∠ACD=∠ADC=70∘, ∠ABD=50∘, ∠CBD=20∘, ∠AEC=40∘, ∠CED=10∘. При инверсии с центром в точке A точки B, C, D, E переходят в точки B′, C′, D′, E′. Выберите все равнобедренные треугольники.
Решение обеих задач основано на том, что у вписанного 4-угольника суммы противоположных углов равны 180°. Кроме того, вписанный угол, опирающийся на диаметр, равен 90°.
1. ∠BAD=∠BCD=90° как опирающиеся на диаметр. ∠ADC= 180-100=80°
2. ∠ABC=∠ADC=90° как опирающиеся на диаметр. 90°=∠ABC=2∠BDC⇒∠BDC=45°⇒∠ADC=90°-45°=45° Про углы∠BAD и ∠BCD ничего сказать нельзя. Чтобы понять это, проводим диаметр AC, рисуем равнобедренный прямоугольный треугольник ABC (B оказывается на окружности), после чего произвольным образом выбираем точку D на окружности по другую сторону от диаметра.
1. Соединим середины сторон всеми возможными Ромб ABCD, в него вписан (как легко убедиться) прямоугольник MKLN, диагонали пересекаются в точке O. Получили 4 маленьких ромба: AMON, MBKO, OKCL, NOLD. В каждом из этих ромбов часть прямоугольника равна половине площади ромба. Отсюда площадь прямоугольника равна половине площади ромба, т.е. S/2.
ответ: S/2.
2. Углы AA1B и AA1C опираются на диаметры, а значит они равны по 90 градусов каждый. АА1 перпендикулярно А1В и А1С, значит, А1В и А1С параллельны, а т.к. они проходят через одну и ту же точку, то они совпадают. Значит, точки В, А1, С лежат на одной прямой.
ответ: 90, 90.
3. Перпендикуляры из точки О равны по одной третьей каждой высоты треугольника(теорема про пропорциональные отрезки). Найдём высоты треугольника.
Есть высота АН. Пусть ВН=х, а СН=6-х.
Из теоремы Пифагора:
25-х2=49-36+12х-х2;
12х=12;
х=1;
АН=2кор(6);
ВН=12кор(6)/7;
СН=12кор(6)/5.
ответ: 2кор(6); 12кор(6)/7; 2,4кор(6).
4. Угол ВСД=60, т.к. угол АСД=АВД=30(углы, оп. на одну дугу, равны.)
1. ∠BAD=∠BCD=90° как опирающиеся на диаметр.
∠ADC= 180-100=80°
2. ∠ABC=∠ADC=90° как опирающиеся на диаметр.
90°=∠ABC=2∠BDC⇒∠BDC=45°⇒∠ADC=90°-45°=45°
Про углы∠BAD и ∠BCD ничего сказать нельзя. Чтобы понять это, проводим диаметр AC, рисуем равнобедренный прямоугольный треугольник ABC (B оказывается на окружности), после чего произвольным образом выбираем точку D на окружности по другую сторону от диаметра.
1. Соединим середины сторон всеми возможными Ромб ABCD, в него вписан (как легко убедиться) прямоугольник MKLN, диагонали пересекаются в точке O. Получили 4 маленьких ромба: AMON, MBKO, OKCL, NOLD. В каждом из этих ромбов часть прямоугольника равна половине площади ромба. Отсюда площадь прямоугольника равна половине площади ромба, т.е. S/2.
ответ: S/2.
2. Углы AA1B и AA1C опираются на диаметры, а значит они равны по 90 градусов каждый. АА1 перпендикулярно А1В и А1С, значит, А1В и А1С параллельны, а т.к. они проходят через одну и ту же точку, то они совпадают. Значит, точки В, А1, С лежат на одной прямой.
ответ: 90, 90.
3. Перпендикуляры из точки О равны по одной третьей каждой высоты треугольника(теорема про пропорциональные отрезки). Найдём высоты треугольника.
Есть высота АН. Пусть ВН=х, а СН=6-х.
Из теоремы Пифагора:
25-х2=49-36+12х-х2;
12х=12;
х=1;
АН=2кор(6);
ВН=12кор(6)/7;
СН=12кор(6)/5.
ответ: 2кор(6); 12кор(6)/7; 2,4кор(6).
4. Угол ВСД=60, т.к. угол АСД=АВД=30(углы, оп. на одну дугу, равны.)
Аналогично угол АДС=50.
Углы СВД и САД равны. И равны они по:
(360-30*4-20*2)/2=100 градусов.
Значит, угол АВС=130, угол ВАД=120.
ответ: 130, 60, 50, 120.