Эти два равнобедренных треугольника подобны, т.к. имеют равный угол, противолежащий их основаниям, и тем самым это обеспечивает равенство их углов при основании.Коэффициент их подобия равен коэффициенту отношения их периметров, т.е. он равен 15:10=1,5 Найдём стороны второго треугольника, у которого периметр равен 10. У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника: 1,5=6:x x=6:1,5=4 см. Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см. А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3. ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
СK- высота ∆ АВС, следовательно, перпендикулярна АВ.
В то же время она является проекцией наклонной DK. По теореме о трех перпендикулярах:
прямая, проведенная на плоскости через основание наклонной перпендикулярно к ее проекции, перпендикулярна самой наклонной. Следовательно, АВ и DK взаимно перпендикулярны, ч.т.д.
___
Расстояние от точки до плоскости определяется длиной перпендикуляра, проведенного от этой точки до плоскости.
АК перпендикулярна двум пересекающимся прямым плоскости DCK.
Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.⇒
АК - перпендикулярна плоскости DKC и является расстоянием до нее от точки А.
Найдём стороны второго треугольника, у которого периметр равен 10.
У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника:
1,5=6:x
x=6:1,5=4 см.
Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см.
А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3.
ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
СK- высота ∆ АВС, следовательно, перпендикулярна АВ.
В то же время она является проекцией наклонной DK. По теореме о трех перпендикулярах:
прямая, проведенная на плоскости через основание наклонной перпендикулярно к ее проекции, перпендикулярна самой наклонной. Следовательно, АВ и DK взаимно перпендикулярны, ч.т.д.
___
Расстояние от точки до плоскости определяется длиной перпендикуляра, проведенного от этой точки до плоскости.
АК перпендикулярна двум пересекающимся прямым плоскости DCK.
Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.⇒
АК - перпендикулярна плоскости DKC и является расстоянием до нее от точки А.
⊿ АKD- прямоугольный, ∠ DAK=45º,⇒∠ ADK=45º⇒
⊿ АKD - равнобедренный. АК=DK.
AK=AD•cos 45º= ( √2•√2):2=1 (ед. длины).