На продолжении стороны AB равнобедренного треугольника ABC с основанием AC отметили точку D так, что AD = AC и точка A находится между точками B и D. Найдите величину угла , ADC если угол ABC равен .
Если мы проведем высоту к вершине из которой выходит диагональ, то поделим большее основание на 2 отрезка равных 1 и 3, т.к. в прямоугольном треугольнике с углами 45 градусов катеты равны, следовательно длина проведенной высоты равна 3. Теперь находим площадь равнобедренной трапеции, зная что меньшее основание равно 2, умножаем его на высоту и получаем 6, далее находим разницу между большим и меньшим основанием, 4-2=2. умножаем 2 на 3 и делим пополам (т.к. площадь равнобедренного треугольника, равна половине произведения его основания на высоту) получаем 3. Далее складываем 3 и 6, получаем 9, следовательно площадь трапеции равна 9
Объем пирамиды равен одной трети произведения ее высоты на площадь основания.
V=⅓ S∙h
Основание правильного шестиугольника состоит из шести правильных треугольников.
Площадь правильного треугольника находят по формуле:
S=(а²√3):4
S=4√3):4=√3
Площадь правильного шестиугольника в основании пирамиды:
S=6√3
Высоту найдем из прямоугольного треугольника АВО:
Так как ребро образует с с диагональю основания угол 60°, высота пирамиды ВО равна
H=ВО=2:ctg (60°)= 2·1/√3=2√3
Можно найти высоту и по т. Пифагора с тем же результатом.
V= 2√3∙6 √3:3=12 (кубических единиц)
Подробнее - на -
Объяснение: