Докажем,что AK=EM Т.к по условию KM и AE диаметры ,то OK=AO=MO=EO(как радиусы),а углы AOK и MOE равны(как вертикальные)=> Треугольники AOK и MOE равны по двум сторонам и углу между ними=>AK=ME Теперь докажем,что треугольники AOM и KOE равны. Углы AOM и KOE равны(как вертикальные),а ОКЕ=АМО и МАО=ОЕК(как накрест лежащие )=>треугольник АОМ равен треугольнику КОЕ по трём углам=>КЕ=АМ,а угол МКЕ равен углу АМК как накрест лежащие Если не нравится доказательство в начале,то можно доказать аналогично тому,что во второй
Т.к по условию KM и AE диаметры ,то OK=AO=MO=EO(как радиусы),а углы AOK и MOE равны(как вертикальные)=> Треугольники AOK и MOE равны по двум сторонам и углу между ними=>AK=ME
Теперь докажем,что треугольники AOM и KOE равны. Углы AOM и KOE равны(как вертикальные),а ОКЕ=АМО и МАО=ОЕК(как накрест лежащие )=>треугольник АОМ равен треугольнику КОЕ по трём углам=>КЕ=АМ,а угол МКЕ равен углу АМК как накрест лежащие
Если не нравится доказательство в начале,то можно доказать аналогично тому,что во второй
1. пусть меньший угол х, тогда второй 4х, третий 5х, сумма всех углов равна 180°, отсюда уравнение
х+4х+5х=180;
10х=180; х=18, значит. меньший угол равен 180°, тогда второй угол 4*18°=72° и третий 45*18°=90°
ответ 18°; 72°; 90°
2. сумма всех углов 180°, если один 54°, то на долю двух оставшихся приходится 180°-54°=126°;
1) пусть меньший угол х, тогда х+х+18=126; 2х=126-18; х=108°/2=54° - меньший угол. тогда больший 54°+18°=72°
2)х+8х=126; х=126/9=14; 14° - меньший угол, тогда больший 8*14°=112°
3)2х+7х=126; х=126/9=14, тогда меньший угол 2*14°=28°, а больший 14°*7=
98°
4) х+0.5х=126; х=126°/1.5=84°- больший угол , тогда меньший 0.5*84=42°