Объяснение:
Дано: ΔАВС;
BN - медиана;
BN = NE;
Доказать: АВ || EC; BC || AE.
Доказательство:
1. Рассмотрим ΔABN и ΔENC.
BN = NE; AN = NC (по условию)
⇒ ∠ANB = ∠ENC (вертикальные)
⇒ ΔABN = ΔENC (по двум сторонам и углу между ними, 1 признак)
В равных треугольниках против равных сторон лежат равные углы.
⇒ ∠1 = ∠2.
2. Рассмотрим ΔANЕ и ΔNВC.
⇒ ∠ANЕ = ∠ВNC (вертикальные)
⇒ ΔANЕ = ΔNВC (по двум сторонам и углу между ними, 1 признак)
⇒ ∠3 = ∠4.
3. ∠1 = ∠2 (п.1) - накрест лежащие при АВ и ЕС и секущей ЕВ.
⇒ АВ || ЕС
∠3 = ∠4 (п.2) - накрест лежащие при АЕ и ВС и секущей АС.
⇒ АЕ || ВС
Объяснение:
Дано: ΔАВС;
BN - медиана;
BN = NE;
Доказать: АВ || EC; BC || AE.
Доказательство:
1. Рассмотрим ΔABN и ΔENC.
BN = NE; AN = NC (по условию)
⇒ ∠ANB = ∠ENC (вертикальные)
⇒ ΔABN = ΔENC (по двум сторонам и углу между ними, 1 признак)
В равных треугольниках против равных сторон лежат равные углы.
⇒ ∠1 = ∠2.
2. Рассмотрим ΔANЕ и ΔNВC.
BN = NE; AN = NC (по условию)
⇒ ∠ANЕ = ∠ВNC (вертикальные)
⇒ ΔANЕ = ΔNВC (по двум сторонам и углу между ними, 1 признак)
В равных треугольниках против равных сторон лежат равные углы.
⇒ ∠3 = ∠4.
3. ∠1 = ∠2 (п.1) - накрест лежащие при АВ и ЕС и секущей ЕВ.
⇒ АВ || ЕС
∠3 = ∠4 (п.2) - накрест лежащие при АЕ и ВС и секущей АС.
⇒ АЕ || ВС