На прямой а отмечаем точки в и С, точка A, лежит между Ви С. Точка D не принадлежит отрезку BC, но принадлежит лучу АВ. * А В C D Є прямой a € отрезку АС E отрезку ВС П С є лучу СВ Выберите хотя бы один вариант ответа в - G
Сначала найдём площадь шестиугольника, вписанного в окружность. Пусть a - сторона шестиугольника, причём так как сторона шестиугольника равна радиусу описанной около него окружности, то R = a. Тогда площадь данного шестиугольника будет рассчитываться по формуле:
S1 = 3√3 R² / 2 = 3√3 a² / 2
Теперь найдём площадь шестиугольника, описанного около окружности. Известно, что радиус вписанной окружности равен стороне вписанного шестиугольника, то есть r = a.
Объяснение: .1) Отношение периметров подобных треугольников равно коэффициенту их подобия .Для решения задачи требуется найти коэффициент подобия. k=108:(14+32)=2
Р1=14+32+40= 86 ( см) ⇒
Р2=86•2=172 см
Проверка: стороны второго треугольника
2•14+2•32=2•40=172 (см)
2) Площади подобных треугольников относятся как квадрат коэффициента их подобия.
k=8:5, а Ѕ1:Ѕ2=k²=64:25 ( частей). При этом разность 64-25=156 см² (дано) Отсюда 1 часть в отношении площадей 156:39=4 ( см²) ⇒
Ѕ1=64•4=256 см²
Ѕ2=25•4=100 см*
3) Биссектриса угла треугольника делит сторону, лежащую против этого угла , в отношении содержащих его сторон.
Обозначим треугольник АВС, угол С=90°. М - точка пересечения гипотенузы биссектрисой. АМ=20 см, ВМ=15 см. АВ=20+15=35 см
Сначала найдём площадь шестиугольника, вписанного в окружность. Пусть a - сторона шестиугольника, причём так как сторона шестиугольника равна радиусу описанной около него окружности, то R = a. Тогда площадь данного шестиугольника будет рассчитываться по формуле:
S1 = 3√3 R² / 2 = 3√3 a² / 2
Теперь найдём площадь шестиугольника, описанного около окружности. Известно, что радиус вписанной окружности равен стороне вписанного шестиугольника, то есть r = a.
S2 = 2√3r² = 2√3 a²
Теперь находим отношение этих площадей.
S1 / S2 = 3√3 a² / 2 : 2√3 a² = 3/4
ответ: 1) 172 см,
Объяснение: .1) Отношение периметров подобных треугольников равно коэффициенту их подобия .Для решения задачи требуется найти коэффициент подобия. k=108:(14+32)=2
Р1=14+32+40= 86 ( см) ⇒
Р2=86•2=172 см
Проверка: стороны второго треугольника
2•14+2•32=2•40=172 (см)
2) Площади подобных треугольников относятся как квадрат коэффициента их подобия.
k=8:5, а Ѕ1:Ѕ2=k²=64:25 ( частей). При этом разность 64-25=156 см² (дано) Отсюда 1 часть в отношении площадей 156:39=4 ( см²) ⇒
Ѕ1=64•4=256 см²
Ѕ2=25•4=100 см*
3) Биссектриса угла треугольника делит сторону, лежащую против этого угла , в отношении содержащих его сторон.
Обозначим треугольник АВС, угол С=90°. М - точка пересечения гипотенузы биссектрисой. АМ=20 см, ВМ=15 см. АВ=20+15=35 см
Тогда АС:ВС=20:15=4/3 .
Примем коэффициент отношения катетов равны а. ⇒
AC=4a,. BC=3a.
По т.Пифагора АВ²=АС²+ВС²
35²=16а²+9а², откуда ²=√(35²:25)=7 ⇒
АС=4•7=28 см
ВС=3•7=21 см
Р=35+28+21=84 см