В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
047oksana
047oksana
30.04.2023 09:25 •  Геометрия

На прямой расположены точки.

4.png

1. Какие точки принадлежат лучу с началом в точке C , содержащему точку N ?
A
N
L
C
D
E

2. Какие точки принадлежат отрезку C N ?
E
N
L
D
A
C

3. Какие точки принадлежат лучу с началом в точке D , содержащему точку N ?
E
A
C
D
L
N

Показать ответ
Ответ:
PolinaZinoviva
PolinaZinoviva
22.11.2022 11:16

Объяснение:

Дано: tg a + ctg a = 9.

Примем tg a  = t,   ctg a = 1/t.

Подставим в заданное уравнение:  t + 1/ t = 9.

Приведя к общему знаменателю, получаем квадратное уравнение:

t² - 9t + 1 = 0.

Квадратное уравнение, решаем относительно t:  

Ищем дискриминант:

D=(-9)^2-4*1*1=81-4=77;

Дискриминант больше 0, уравнение имеет 2 корня:

t_1 = (√77-(-9))/(2*1) = (√77+9)/2 = √77/2+9/2=√77/2+4.5 ≈ 8.887482

t_2 =  (-√77-(-9))/(2*1) = (-√77+9)/2 = -√77/2+9/2 = -√77/2+4.5 ≈ 0.112518.

Так как 1/8,887482 = 0,112518, а 1/8,887482 = 0,112518, то мы получили 2 пары значений тангенса и котангенса угла.

Далее используем формулы перехода от одной функции к другой.

sin α = tg α/+-√(1 + tg²α) = (√77/2+4.5)/(√(1 + (√77/2+4.5)²) = √((9-√77)/18) ≈ 0,111812 .

Аналогично для второго значения тангенса находим:

sin α = √((9+√77)/18) ≈ 0,993729.

Косинусы равны обратным значениям синусов.

cos α = √((9+√77)/18) ≈ 0,993729.

cos α = √((9-√77)/18) ≈ 0,111812 .

0,0(0 оценок)
Ответ:
2005Angelika
2005Angelika
24.06.2021 07:48

Площа трикутника дорівнює половині від твору його боку на висоту, проведену до цієї сторони. Сторону, до якої проведена висота, прийнято в такому випадку називати підставою. Таким чином, можна сказати, що площа трикутника дорівнює половині добутку його основи на висоту.

Якщо позначити довжину сторони-основи трикутника як a, висоту – як h, то вийде формула площі трикутника:

S = ½ ah

Щоб довести цю формулу, слід розглянути всі варіанти розташування висоти в трикутнику. Їх усього три. Це:

Висота збігається з однією з сторін трикутника. У цьому випадку ми маємо справу з прямокутним трикутником, в якому за основу взято один з катетів. Висотою ж, проведеної до цього катету, є інший катет.

Висота знаходиться всередині трикутника. У цьому випадку вона перетинається з основою і ділить його на два відрізки. При цьому даний трикутник ділиться на два прямокутних трикутника.

Висота проходить за межами трикутника. У такому випадку вона перетинається не з самим підставою, а з його продовженням (прямий, на якій лежить підстава).

Розглянемо перший випадок. Нехай дано трикутник ABC. У ньому до основи AC довжиною a проведена висота h, яка співпала зі стороною BC:

Площа прямокутного трикутника

Як відомо площа прямокутника дорівнює добутку його суміжних сторін. Якби у нас був прямокутник зі сторонами, довжини яких a і h, то його площа дорівнювала б ah. Якщо в прямокутнику провести діагональ, то вона розбиває його на два рівних прямокутних трикутника (у них відповідно рівні всі три сторони). Площі цих трикутників також рівні між собою і кожна становить ½ від площі всього прямокутника. Таким чином доведено, що площа трикутника в даному випадку буде дорівнює ½ah.

Розглянемо другий випадок. Нехай у ньому висота BH довжиною h перетинає сторону AC довжиною a.

Площа трикутника по підставі і висоті

У цьому випадку ми отримуємо два прямокутних трикутника: ABH і CBH. З розглянутого першого випадку ми знаємо, що їх площі рівні відповідно ½ · AH · h і ½ · CH · h.

Площа ж усього трикутника ABC являє собою суму цих двох площ:

S = ½ · AH · h + ½ · CH · h

Винесемо за дужки спільні множники:

S = ½ · h · (AH + CH)

Але ж AH і CH в сумі складають довжину a. Таким чином, приходимо до формули, яку потрібно було довести:

S = ½ · h · a

Тепер розглянемо третій випадок, коли висота знаходиться за межами трикутника:

Площа трикутника по підставі і висоті

Тут ми теж можемо побачити два прямокутних трикутника. Це ΔABH і ΔCBH. Причому перший включає в себе другий. Шуканий самий трикутник ABC є доповненням до трикутника CBH до трикутника ABH. Таким чином ми можемо записати, що площа ΔABH дорівнює сумі площ ΔCBH і ΔABC:

SΔABH = SΔCBH + SΔABC

Звідки знаходимо площа шуканого трикутника ABC:

SΔABC = SΔABH – SΔCBH

Площа трикутника ABH дорівнює ½ · AH · h, площа трикутника CBH дорівнює ½ · CH · h:

SΔABC = ½ · AH · h – ½ · CH · h

Виносимо загальні множники за дужку:

SΔABC = ½ · h · (AH – CH)

Але ж якщо з відрізка AH відняти відрізок CH, то вийде відрізок AC, довжина якого дорівнює a. Отже, ми можемо записати, що і в цьому випадку площа трикутника дорівнює також ½ ah.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота