На ребре прямого двугранного угла лежит хорда сферы, равная радиусу сферы. Центр сферы лежит внутри двугранного угла и удален от каждой из его граней на 3. Найдите радиус сферы.
Так как искомая окружность должна касаться хорды АВ данной нам окружности радиуса R=15 и самой этой окружности, ясно, что искомая окружность расположена внутри кругового сегмента, стягиваемого хордой АВ. Поскольку хорда АВ делит круг на два круговых сегмента, существует и два варианта решения. На рисунке представлены оба варианта расположения искомой окружности. Точка касания "С" этой окружности с хордой АВ определена. Проведем радиус r=O1C искомой окружности в точку касания. Этот радиус О1С перпендикулярен хорде АВ. Проведем радиус R=ОР данной нам окружности к хорде АВ . Он также перпендикулярен хорде АВ и, кроме того, делит ее пополам в точке М. Тогда АМ=0,5АВ=12, АС=АВ/3=8. СМ=12-8=4. Опустим из центра искомой окружности перпендикуляр на диаметр КР, включающий в себя радиус R. О1М1=СМ=4. Из прямоугольного треугольника ОАМ по Пифагору найдем отрезок ОМ. ОМ=√(АО²-АМ²)=√(15²-12²)=9. В прямоугольнике М1О1СМ сторона ММ1=r, где r - радиус искомой окружности. Тогда для первого варианта (окружность расположена в большем секторе): ОМ1=ММ1-ОМ = r-9. ОО1=R-r. (Так как оба радиуса лежат на одной прямой - радиуса в точку касания Т обеих окружностей). И из прямоугольного треугольника М1О1О по Пифагору имеем: ОО1²=О1М1²+М1О² или (15-r)²=4²+(r-9)² или 225-30r+r²=16+r²-18r+81. Отсюда r=32/3. Для второго варианта (окружность расположена в меньшем секторе): ОМ1=ММ1+ОМ = r+9. И ОО1²=(15-r)²=4²+(r+9)² или 225-30r+r²=16+r²+18r+81. Отсюда r=8/3.
Поскольку AN - биссектриса угла В, то ∠BAK=∠ KAN. ∠BNK=∠KAN как накрест лежащие ⇒ ∠BAK=∠BNK. А значит мы получим, что треугольник ABN равнобедренный. А значит AB=BN. Треугольник ΔABK=ΔBKN (по двум углам и стороне между ними: BN=AB, ∠BNK=∠BNK, ∠ABK=∠NBK поскольку BK биссектриса).
Проведем высоту в треугольнике KBN из К на сторону BN. Поскольку ΔABK=ΔBKN, то и высоты равны KH=KH₁=1. Если опустить высоту из точки К до стороны AD, то получим высоту KH₂. ΔKBN=ΔAKM (по стороне и двум прилежащим к ним углам: AK=KN, ∠KAM=∠BNK, ∠AKM=∠BKN - вертикальные). Значит KH₁=KH₂=1 ⇒ H₁H₂=1*2=2 Sabcd=BC*H₁H₂=2*2=4
На рисунке представлены оба варианта расположения искомой окружности.
Точка касания "С" этой окружности с хордой АВ определена.
Проведем радиус r=O1C искомой окружности в точку касания. Этот радиус О1С перпендикулярен хорде АВ. Проведем радиус R=ОР данной нам окружности к хорде АВ . Он также перпендикулярен хорде АВ и, кроме того, делит ее пополам в точке М. Тогда АМ=0,5АВ=12, АС=АВ/3=8. СМ=12-8=4.
Опустим из центра искомой окружности перпендикуляр на диаметр КР, включающий в себя радиус R. О1М1=СМ=4. Из прямоугольного треугольника ОАМ по Пифагору найдем отрезок ОМ.
ОМ=√(АО²-АМ²)=√(15²-12²)=9.
В прямоугольнике М1О1СМ сторона ММ1=r, где r - радиус искомой окружности.
Тогда для первого варианта (окружность расположена в большем секторе):
ОМ1=ММ1-ОМ = r-9. ОО1=R-r. (Так как оба радиуса лежат на одной прямой - радиуса в точку касания Т обеих окружностей). И из прямоугольного треугольника М1О1О по Пифагору имеем:
ОО1²=О1М1²+М1О² или (15-r)²=4²+(r-9)² или
225-30r+r²=16+r²-18r+81. Отсюда r=32/3.
Для второго варианта (окружность расположена в меньшем секторе):
ОМ1=ММ1+ОМ = r+9. И ОО1²=(15-r)²=4²+(r+9)² или 225-30r+r²=16+r²+18r+81. Отсюда r=8/3.
∠BNK=∠KAN как накрест лежащие ⇒ ∠BAK=∠BNK.
А значит мы получим, что треугольник ABN равнобедренный.
А значит AB=BN.
Треугольник ΔABK=ΔBKN (по двум углам и стороне между ними: BN=AB, ∠BNK=∠BNK, ∠ABK=∠NBK поскольку BK биссектриса).
Проведем высоту в треугольнике KBN из К на сторону BN.
Поскольку ΔABK=ΔBKN, то и высоты равны KH=KH₁=1.
Если опустить высоту из точки К до стороны AD, то получим высоту KH₂.
ΔKBN=ΔAKM (по стороне и двум прилежащим к ним углам: AK=KN, ∠KAM=∠BNK, ∠AKM=∠BKN - вертикальные).
Значит KH₁=KH₂=1 ⇒ H₁H₂=1*2=2
Sabcd=BC*H₁H₂=2*2=4