Соединим точки B и D, т.к. они лежат в одной плоскости. BD - отрезок сечения. Соединим точки К и D, т.к. они лежат в одной плоскости. КD - отрезок сечения. КD и АА₁ лежат в одной плоскости, продлим их до пересечения в точке О. Точки О и В лежат в одной плоскости (АВВ₁), проведем через них прямую, которая пересечет ребро А₁В₁ в точке L. DKLB - искомое сечение.
BD = 8√2 как диагональ квадрата.
К - середина А₁В₁, KL║BD, т.к. параллельные плоскости пересекаются секущей по параллельным прямым, ⇒ KL║B₁D₁ ⇒KL - средняя линия ΔA₁B₁D₁, KL = B₁D₁/2 = 8√2/2 = 4√2
Объяснение:
Обозначим величину угла ACB через х.
Выразим через х величину угла ВАС.
Согласно условию задачи, величина угол BAC в 2 раза больше, чем величина угла ACB, следовательно, величина угла ВАС составляет 2х.
Рассмотрим треугольник АВС.
В данном треугольнике угол АВС является прямым.
Поскольку сумма углов любого треугольник равна 180°, можем составить следующее уравнение:
х + 2х + 90 = 180.
Решаем полученное уравнение и находим величину угла ACB:
3х + 90 = 180;
3х = 180 - 90;
3х = 90;
х = 90 / 3;
х = 30°.
Находим величину угла ВАС:
2х = 2 * 30 = 60°.
ответ: угол ACB равен 30°, угол BAC равен 60°.
Соединим точки К и D, т.к. они лежат в одной плоскости. КD - отрезок сечения.
КD и АА₁ лежат в одной плоскости, продлим их до пересечения в точке О.
Точки О и В лежат в одной плоскости (АВВ₁), проведем через них прямую, которая пересечет ребро А₁В₁ в точке L.
DKLB - искомое сечение.
BD = 8√2 как диагональ квадрата.
К - середина А₁В₁, KL║BD, т.к. параллельные плоскости пересекаются секущей по параллельным прямым, ⇒ KL║B₁D₁ ⇒KL - средняя линия ΔA₁B₁D₁, KL = B₁D₁/2 = 8√2/2 = 4√2
ΔDD₁K = ΔBB₁L по двум катетам.
∠В₁ = 90° BB₁ = 3, LB₁ = 4 ⇒ BL = 5 (Египетский треугольник)
Pdklb = 2·BL + KL + BD = 10 + 4√2 + 8√2 = 10 + 12√2