На рисунке 1 В = С = 90°; 1 = 2. Докажите, что АВ = СD.
2) На рисунке 2 АВ = СD; ВС = АD, АFВ = СЕD = 90°. Докажите, что BF = ED; АF = EC.
3) На рисунке 3 1 = 2 = 90°, АВ = DС. Докажите, что ВС = АD.
4) На рисунке 4 АН и А1Н1 – высоты треугольников АВС и А1В1С1; АС = А1С1; 1 = 2; АН = А1Н1.
Докажите, что АВС = А1В1С1
и ВС( верхнее), Угол А = 60, угол В = 120, Точка О - центр окружности. Из точки О проведём перпендикуляр к ВС ( радиус) Появилась точка К. ΔВОК прямоугольный с углом 60 и 30 ( весь угол В = 120)
2) Из В опустим высоту ВМ.
ΔАВМ прямоугольный с гипотенузой = а и углом 30
АМ = а/2 по т Пифагора ВМ = а√3/2 ( это высота трапеции)
3) ΔВКО
КО = а√3/4 (половина ВМ) ВК =х ВО = 2х
Составим по т. Пифагора 3х² = 3а²/16⇒ х² = а²/16⇒х = а/4
4) ВC = а/2, АD=3а/2
5) Площадь трапеции = произведению полусуммы оснований на высоту.
S =(а/2 + 3а/2)·а√3/2 :2 = 2а ·а√3/2 :2 = а²√3/2
и ВС( верхнее), Угол А = 60, угол В = 120, Точка О - центр окружности. Из точки О проведём перпендикуляр к ВС ( радиус) Появилась точка К. ΔВОК прямоугольный с углом 60 и 30 ( весь угол В = 120)
2) Из В опустим высоту ВМ.
ΔАВМ прямоугольный с гипотенузой = а и углом 30
АМ = а/2 по т Пифагора ВМ = а√3/2 ( это высота трапеции)
3) ΔВКО
КО = а√3/4 (половина ВМ) ВК =х ВО = 2х
Составим по т. Пифагора 3х² = 3а²/16⇒ х² = а²/16⇒х = а/4
4) ВC = а/2, АD=3а/2
5) Площадь трапеции = произведению полусуммы оснований на высоту.
S =(а/2 + 3а/2)·а√3/2 :2 = 2а ·а√3/2 :2 = а²√3/2