Если из центра окружности, вокруг которой описан правильный шестиугольник, провести две прямые до пересечения с началом и концом одной из сторон шести угольника, мы получим равносторонний (угол между радиусами равен 360 градусов :6 = 60 градусов) треугольник, высота которого равна радиусу окружности. Как известно, высота, опущенная на сторону равностороннего треугольника, делит ее пополам. Тогда, сторона шести угольника, она же сторона равностороннего треугольника, она же гипотенуза прямоугольного треугольника, один катет которого - радиус окружности, а другой - половина половина гипотенузы, можно вычислить по формуле: а² =r² +(a/2)²; a= 2r/√ 3; Подставляем значение r=5√ 3; a=10.
Если центр окружности соединить с вершинами данного треугольника, то он (данный треугольник) поделится на 3 новых треугольника. Теперь площадь исходного треугольника можно представить в виде суммы площадей 3х новых треугольников S= s1+ s2+ s3; Пусть стороны исходного треугольника равны x y и t, тогда x+ y+ t= 16; s1= x/2* h; s2= y/2* h; s3= t/2* h; у всех трёх треугольников h является радиусом (по свойству касательной к окружности). Если по условию x+ y+ t= 16, то x/2+ y/2+ t/2= 16/2= 8; S= s1+ s2+ s3= x/2* h+ y/2* h+ t/2*h= h(x/2+ y/2+ t/2)= 2*8= 16