обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
Вершины треугольника АВС лежат на окружности, значит углы А, В и С - вписанные и равны половине градусной меры дуг, на которые они опираются. Угол АОС - центральный, поэтому дуга АС равна 80°. Тогда угол В, вписанный и опирающийся на дугу АС, равен 40°. <A+<C=180°-40°=140° так как сумма углов треугольника равна 180°. <A+<C=4x+3x (дано). Тогда х=140°:7=20°. <A=20*4=80°, <C=20*3=60°. Значит дуга АВ=120° (на нее опирается угол С), дуга ВС=160° (на нее опирается угол А). ответ: Дуга АВ=120°, дуга АС=80°, дуга ВС=160°.
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см
Тогда угол В, вписанный и опирающийся на дугу АС, равен 40°.
<A+<C=180°-40°=140° так как сумма углов треугольника равна 180°.
<A+<C=4x+3x (дано). Тогда х=140°:7=20°. <A=20*4=80°, <C=20*3=60°.
Значит дуга АВ=120° (на нее опирается угол С), дуга ВС=160° (на нее опирается угол А).
ответ: Дуга АВ=120°, дуга АС=80°, дуга ВС=160°.