На рисунке 127 изображен план местности из десяти комнат .Можно ли пройти через все двери всех комнат , запирая каждый раз ту дверь , через которую вы проходите ? С какой комнаты надо начинать движение?
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Объем конуса вычисляется по формуле: v = 1/3 * п * r^2 * h для удобства лучше рассматривать треугольник, полученный в результате осевого сечения, допустим авс. плоскость, параллельна основанию, пересекает этот треугольник по прямой мк. поскольку плоскость параллельна основанию и проходит через середину высоты, то мк - средняя линия треуг. авс и мк =ас/2. значит в полученном конусе вдвое меньше высота и радиус. тогда объем меньшего конусо: v = 1/3 * п * (r/2)^2 * h/2 = 1/3 * п * (r^2)/4 * h/2 = 1/3 * п * (r^2 * h) / 8 сравнив формулы объема конусов видно, что объем второго конуса меньше в 8 раз. v = 40 ^ 8 = 5.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.