На рисунке 163 изображены Два одинаковых колеса тепловоза. Радиусы O1 А и O2 В равны. Стержень AB, длина которого равна расстоянию O1 O2 , между центрами колёс, передаёт движение от одного колеса к другому. Докажите, что отрезки AB и O1 O2 либо параллельны, либо лежат на одной прямой.
1. 2 прямые делят плоскость на 4 части если они пересекаются ; или на 3 части, если прямые параллельны.
2. 3 прямые делят плоскость на 6 частей, если пересекаются в одной точке или две из них параллельны, а третья их пересекает ; если попарное пересечение и при этом никакие две не параллельны, то на 7 частей ; и на 4 части, при условии, что все эти прямые параллельны.
3. 4 прямые делят плоскость на 8 частей. если одна прямая пересекает три параллельных, если же две пары параллельных пересекаются в 4 точках, то плоскость делится на 9 частей, то же получим, если две параллельны, а две другие пересекаются в точке, принадлежащей одной из параллельных прямых; если все 4 прямые параллельны, то они делят плоскость на 5 частей, если две параллельные, а две другие пересекаются в точке, не принадлежащей ни одной из параллельных, то
они делят плоскость на 10 частей, если две пересекаются, две другие тоже пересекаются, и никакие не параллельны между собой, и точки пересечения двух пересекающихся пар не совпадают. то получим 11 частей плоскости.
Итак, 4 прямые делят плоскость на 5;8;9;10;11 частей.
Найдем стороны четырехугольника АВСD: Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА. АВ{-1;-1;2}, |AB|=√(1+1+4)=√6. BC{1;-1;0}, |BC|=√(1+1+0)=√2. CD{1;1;-2},|CD|=√(1+1+2)=√6. AD{1;-1;0}, |AD|=√(1+1+0)=√2. Итак, в четырехугольнике противоположные стороны ПОПАРНО равны: AB=CD, BC=DA. Если противоположные стороны ПОПАРНО равны, то четырехугольник АВСD - параллелограмм.(свойство). Что и требовалось доказать. Теперь определим угол между двумя соседними векторами АВ{-1;-1;2} и AD{1;-1;0}. Угол α между вектором a и b: cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+x2²)]. В нашем случае: cosα=(1+1+0)/[√(1+1+4)*√(1+1+0)] = 2/(2√3) = 1/√3 или CosA=√3/3.
1. 2 прямые делят плоскость на 4 части если они пересекаются ; или на 3 части, если прямые параллельны.
2. 3 прямые делят плоскость на 6 частей, если пересекаются в одной точке или две из них параллельны, а третья их пересекает ; если попарное пересечение и при этом никакие две не параллельны, то на 7 частей ; и на 4 части, при условии, что все эти прямые параллельны.
3. 4 прямые делят плоскость на 8 частей. если одна прямая пересекает три параллельных, если же две пары параллельных пересекаются в 4 точках, то плоскость делится на 9 частей, то же получим, если две параллельны, а две другие пересекаются в точке, принадлежащей одной из параллельных прямых; если все 4 прямые параллельны, то они делят плоскость на 5 частей, если две параллельные, а две другие пересекаются в точке, не принадлежащей ни одной из параллельных, то
они делят плоскость на 10 частей, если две пересекаются, две другие тоже пересекаются, и никакие не параллельны между собой, и точки пересечения двух пересекающихся пар не совпадают. то получим 11 частей плоскости.
Итак, 4 прямые делят плоскость на 5;8;9;10;11 частей.
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.
АВ{-1;-1;2}, |AB|=√(1+1+4)=√6.
BC{1;-1;0}, |BC|=√(1+1+0)=√2.
CD{1;1;-2},|CD|=√(1+1+2)=√6.
AD{1;-1;0}, |AD|=√(1+1+0)=√2.
Итак, в четырехугольнике противоположные стороны ПОПАРНО равны: AB=CD, BC=DA.
Если противоположные стороны ПОПАРНО равны, то четырехугольник АВСD - параллелограмм.(свойство).
Что и требовалось доказать.
Теперь определим угол между двумя соседними векторами АВ{-1;-1;2} и AD{1;-1;0}.
Угол α между вектором a и b:
cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+x2²)].
В нашем случае: cosα=(1+1+0)/[√(1+1+4)*√(1+1+0)] = 2/(2√3) = 1/√3 или
CosA=√3/3.