Параллелограмм – четырехугольник, у которого каждые две противоположные стороны параллельны Первый признак параллелограмма. Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник – параллелограмм Второй признак параллелограмма. Если в четырехугольнике каждые две противоположные стороны равны, то этот четырехугольник – параллелограмм Третий признак параллелограмма. Если в четырёхугольнике диагонали в точке пересечения делятся пополам, то данный четырёхугольник является параллелограммом. Трапеция – это четырёхугольник, у которого две стороны параллельны, а две другие – нет. Средняя линия трапеции – отрезок, соединяющий середины боковых сторон. Средняя линия трапеции равна полусумме оснований трапеции. Прямоугольником называют параллелограмм, у которого все углы прямые Свойство прямоугольника. Диагонали прямоугольника равны. Признак прямоугольника. Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.
Ромб – это параллелограмм, у которого все стороны равны. Квадрат – это прямоугольник, у которого все стороны равны. ВСЕ ПЛОЩАДИ ФИГУР(многоугольник, прямоугольник,квадрат, параллелограмм, треугольник, трапеция) Теорема пифагора - в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Разобрать формулу Герона(редко, но нужна) Подобие фигур - Подобными называются такие треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника Первый признак подобия треугольгольников - Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Второй признак - Если две стороны одного треугольника пропорциональны двум другим сторонам другого треугольника, а углы, заключённые между этими сторонами, равны, то такие треугольники подобны. Третий признак - Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Пусть А, В и С - это вершины треугольника, причем А и В - вершины при основании. Точка пересечения боковых медиан - О. Проведем третью медиану СМ из вершины С, она тоже пройдет через точку О (т.к. все медианы пересекаются в одной точке - эта точка делит каждую медиану в отношении 1:2, т.е. ОМ = СМ/3). В равнобедренном теругольнике медиана, проведенная из вершины, является одновременно и биссектрисой этого угла, и высотой. Основание теугольника известно по условию. Если мы найдем величину высоты СМ, то легко найдем площадь треугольника - S = СМ * АВ /2. Заметим, что треугольник АОВ прямоугольный (по условию, т.к. медианы пересекаются под прямым углом) и равнобедренный ( трегольники АОС и ВОС равны по равенству двух сторон и углов между ними, т.к. АС=ВС по условию, СО - общая сторона и углы АСО и СОВ равны, поскольку СО - биссектриса угла АСВ, следовательно, АО=ОВ). Углы при основании треугольника АОВ равны и составляют 45 градусов каждый. Поэтому треугольник АОМ тоже равнобедренный (угол АМО прямой, а угол ОАМ 45 градусов, значит, и угол АОМ тоже 45 градусов). Следовательно, АМ=ОМ (как стороны равнобедренного треугольника АОМ). АМ равна половине основания АВ (т.к. СМ - медиана), следовательно ОМ =2. Полная длина медианы СМ=ОМ * 3 = 6. S = СМ * АВ /2 = 6 * 4 / 2 = 12.
Первый признак параллелограмма. Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник – параллелограмм
Второй признак параллелограмма. Если в четырехугольнике каждые две противоположные стороны равны, то этот четырехугольник – параллелограмм
Третий признак параллелограмма. Если в четырёхугольнике диагонали в точке пересечения делятся пополам, то данный четырёхугольник является параллелограммом.
Трапеция – это четырёхугольник, у которого две стороны параллельны, а две другие – нет.
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Средняя линия трапеции равна полусумме оснований трапеции.
Прямоугольником называют параллелограмм, у которого все углы прямые
Свойство прямоугольника. Диагонали прямоугольника равны.
Признак прямоугольника. Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.
Ромб – это параллелограмм, у которого все стороны равны.
Квадрат – это прямоугольник, у которого все стороны равны.
ВСЕ ПЛОЩАДИ ФИГУР(многоугольник, прямоугольник,квадрат, параллелограмм, треугольник, трапеция)
Теорема пифагора - в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Разобрать формулу Герона(редко, но нужна)
Подобие фигур - Подобными называются такие треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника
Первый признак подобия треугольгольников - Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Второй признак - Если две стороны одного треугольника пропорциональны двум другим сторонам другого треугольника, а углы, заключённые между этими сторонами, равны, то такие треугольники подобны.
Третий признак - Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Проведем третью медиану СМ из вершины С, она тоже пройдет через точку О (т.к. все медианы пересекаются в одной точке - эта точка делит каждую медиану в отношении 1:2, т.е. ОМ = СМ/3).
В равнобедренном теругольнике медиана, проведенная из вершины, является одновременно и биссектрисой этого угла, и высотой. Основание теугольника известно по условию. Если мы найдем величину высоты СМ, то легко найдем площадь треугольника - S = СМ * АВ /2.
Заметим, что треугольник АОВ прямоугольный (по условию, т.к. медианы пересекаются под прямым углом) и равнобедренный ( трегольники АОС и ВОС равны по равенству двух сторон и углов между ними, т.к. АС=ВС по условию, СО - общая сторона и углы АСО и СОВ равны, поскольку СО - биссектриса угла АСВ, следовательно, АО=ОВ).
Углы при основании треугольника АОВ равны и составляют 45 градусов каждый. Поэтому треугольник АОМ тоже равнобедренный (угол АМО прямой, а угол ОАМ 45 градусов, значит, и угол АОМ тоже 45 градусов). Следовательно, АМ=ОМ (как стороны равнобедренного треугольника АОМ).
АМ равна половине основания АВ (т.к. СМ - медиана), следовательно ОМ =2. Полная длина медианы СМ=ОМ * 3 = 6.
S = СМ * АВ /2 = 6 * 4 / 2 = 12.