Окружностью с центром в точке О и радиусом R называют множество всех точек плоскости, удаленных от точки О на расстояние R (см. Рис. 1).
Рис. 1
Часть окружности называется дугой.
Дуга имеет угловое измерение.
Градусная мера дуги равна градусной мере соответствующего центрального угла :
Рассмотрим примеры:
Рис. 2
Определение
Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным.
Рис. 3
Задана окружность с центром О, вершина А лежит на окружности, стороны АВ и АС угла пересекают окружность в точках В и С, угол называется вписанным. Он опирается на дугу , эта дуга расположена внутри угла (см. Рис. 3).
2. Теорема о вписанном угле
Вписанный угол измеряется половиной дуги, на которую он опирается (см. Рис. 4).
Рис. 4
Доказательство:
Рассмотрим несколько случаев.
Случай 1: точка О принадлежит лучу АС (см. Рис. 5).
Рис. 5
Доказать, что
Обозначим угол через , тогда угол также будет равен , так как треугольник равнобедренный, его стороны ОВ и ОА равны как радиусы окружности. Угол является внешним для треугольника , внешний угол равен сумме двух других углов, не смежных с ним, получаем: , то есть угловое измерение дуги есть . Таким образом, мы доказали, что вписанный угол равен половине измерения дуги, на которую он опирается.
Случай 2: точка О лежит внутри вписанного угла (см. Рис. 6).
Рис. 6
Доказать, что
Доказательство сводится к предыдущему случаю. Проведем диаметр AD, обозначим угол за и тогда дуга равна (объяснение см. случай 1). Угол за , тогда дуга равна (объяснение см. случай 1). Вся дуга равна:
Угол в свою очередь, равен .
Таким образом, мы доказали, что вписанный угол равен половине дуги, на которую он опирается.
Случай 3: точка О находится вне вписанного угла (см. Рис. 7).
Рис. 7
Доказать, что
Доказательство снова сводится к первому случаю. Проведем диаметр AD, обозначим угол через , тогда дуга (объяснение см. случай 1). Угол обозначим через , тогда дуга равна (объяснение см. случай 1). Дуга является разностью большой дуги и дуги :
Вписанный угол равен . Таким образом, мы доказали, что вписанный угол равен половине дуги, на которую он опирается.
Итак, теорема полностью доказана, все случаи рассмотрены. И теперь из этого вытекают важные следствия.
3. Следствия теоремы о вписанном угле
Следствие 1:
Вписанные углы, опирающиеся на одну и ту же дугу, равны между собой (см. Рис. 8).
Рис. 8
Угол равен , он вписанный и опирается на дугу , значит, дуга равна . Но на эту же дугу опираются много других углов, например, углы и , данные углы измеряются половиной градусной меры дуги, значит, они равны , как и угол .
Таким образом, получаем:
Следствие 2
Вписанные углы, опирающиеся на диаметр, прямые (см. Рис. 9).
Рис. 9
Теорема о вписанном угле является ключом к доказательству многих других теорем и к решению многих задач.
4. Теорема о хордах
Произведение отрезков каждой из двух пересекающихся хорд есть величина постоянная.
Рис. 10
Доказать, что
Доказательство:
Рассмотрим треугольники и (см. Рис. 10). Данные треугольники подобны по равенству двух углов: равны вертикальные углы и ; вписанные углы и опираются на одну и ту же дугу . Выпишем соотношение подобия:
Применим свойство пропорции и преобразуем выражение:
Найдите площадь сечения проходящей через боковое ребро и меньшую диагональ основания (через BD и BB₁ ≡ BD и DD₁ )
решение: Меньшая диагональ призмы BD = AB .
ABCD ромб ; AB || DC ⇒ ∡BAD + ∡ABC=180° (сумма односторонних углов) ∡BAD = 180° - 120° = 60° . Таким образом в равнобедренном треугольнике ABD ( ABCD ромб ⇒AB=AD ) один из углов равен 60° , следовательно → равносторонний и поэтому
BD = AB = 5 см .
Сечение BDD₁B₁ . Площадь сечения: Sсеч = BD*DD₁ =AB*DD₁
Из Sбок =(4*AB)*DD₁ ⇒AB*DD₁ = Sбок/4 =240/4 = 60 (см²)
Sсеч = 60 (см²) .
-------
Пусть O и O₁ точки пересечения диагоналей оснований ABCD и A₁B₁C₁D₁ соответственно плоск(A₁AC) ≡ плоск(A₁AO)
плоск(A₁AC) ⊥ плоск(DBB₁ ), т.к. плоск(A₁AC) происходит через AO , которая перпендикулярна BD и OO₁. Очевидно OO₁ || BB₁
Напомним некоторые определения
Определение:
Окружностью с центром в точке О и радиусом R называют множество всех точек плоскости, удаленных от точки О на расстояние R (см. Рис. 1).
Рис. 1
Часть окружности называется дугой.
Дуга имеет угловое измерение.
Градусная мера дуги равна градусной мере соответствующего центрального угла :
Рассмотрим примеры:
Рис. 2
Определение
Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным.
Рис. 3
Задана окружность с центром О, вершина А лежит на окружности, стороны АВ и АС угла пересекают окружность в точках В и С, угол называется вписанным. Он опирается на дугу , эта дуга расположена внутри угла (см. Рис. 3).
2. Теорема о вписанном углеВписанный угол измеряется половиной дуги, на которую он опирается (см. Рис. 4).
Рис. 4
Доказательство:
Рассмотрим несколько случаев.
Случай 1: точка О принадлежит лучу АС (см. Рис. 5).
Рис. 5
Доказать, что
Обозначим угол через , тогда угол также будет равен , так как треугольник равнобедренный, его стороны ОВ и ОА равны как радиусы окружности. Угол является внешним для треугольника , внешний угол равен сумме двух других углов, не смежных с ним, получаем: , то есть угловое измерение дуги есть . Таким образом, мы доказали, что вписанный угол равен половине измерения дуги, на которую он опирается.
Случай 2: точка О лежит внутри вписанного угла (см. Рис. 6).
Рис. 6
Доказать, что
Доказательство сводится к предыдущему случаю. Проведем диаметр AD, обозначим угол за и тогда дуга равна (объяснение см. случай 1). Угол за , тогда дуга равна (объяснение см. случай 1). Вся дуга равна:
Угол в свою очередь, равен .
Таким образом, мы доказали, что вписанный угол равен половине дуги, на которую он опирается.
Случай 3: точка О находится вне вписанного угла (см. Рис. 7).
Рис. 7
Доказать, что
Доказательство снова сводится к первому случаю. Проведем диаметр AD, обозначим угол через , тогда дуга (объяснение см. случай 1). Угол обозначим через , тогда дуга равна (объяснение см. случай 1). Дуга является разностью большой дуги и дуги :
Вписанный угол равен . Таким образом, мы доказали, что вписанный угол равен половине дуги, на которую он опирается.
Итак, теорема полностью доказана, все случаи рассмотрены. И теперь из этого вытекают важные следствия.
3. Следствия теоремы о вписанном углеСледствие 1:
Вписанные углы, опирающиеся на одну и ту же дугу, равны между собой (см. Рис. 8).
Рис. 8
Угол равен , он вписанный и опирается на дугу , значит, дуга равна . Но на эту же дугу опираются много других углов, например, углы и , данные углы измеряются половиной градусной меры дуги, значит, они равны , как и угол .
Таким образом, получаем:
Следствие 2
Вписанные углы, опирающиеся на диаметр, прямые (см. Рис. 9).
Рис. 9
Теорема о вписанном угле является ключом к доказательству многих других теорем и к решению многих задач.
4. Теорема о хордахПроизведение отрезков каждой из двух пересекающихся хорд есть величина постоянная.
Рис. 10
Доказать, что
Доказательство:
Рассмотрим треугольники и (см. Рис. 10). Данные треугольники подобны по равенству двух углов: равны вертикальные углы и ; вписанные углы и опираются на одну и ту же дугу . Выпишем соотношение подобия:
Применим свойство пропорции и преобразуем выражение:
, что и требовалось доказать.
N1. Дано : ABCA₁B₁C₁ - правильная треугольная призма ,
BC= AC= AB= 6 см , CA₁ = 10 см . Sбок -? Sпол - ?
решение: Sбок = 3*S(AA₁C₁C) = (3*AC)*AA₁
Из ∆A₁AC с теоремы Пифагора:
AA₁ =√(CA₁² -A₁C² ) =√(10² -6² ) =8 (см). || 2*3 ;2*4 ; 2*5 ||
Sбок = (3*6)*8 =144 (см²)
Sпол =Sбок +2*S(ABC) , но S(ABC) =AB²√3 /4 =6²√3 / 4 = 9√3
Sпол =144 + 18√3 ( см² ) || 18(8 +√3) ||
-------
N2. Дано : ABCDA₁B₁C₁D₁ - прямая призма ,
ABCD-ромб, AB= 5 см ; ∡ABC =120° , Sбок =240 см²
Найдите площадь сечения проходящей через боковое ребро и меньшую диагональ основания (через BD и BB₁ ≡ BD и DD₁ )
решение: Меньшая диагональ призмы BD = AB .
ABCD ромб ; AB || DC ⇒ ∡BAD + ∡ABC=180° (сумма односторонних углов) ∡BAD = 180° - 120° = 60° . Таким образом в равнобедренном треугольнике ABD ( ABCD ромб ⇒AB=AD ) один из углов равен 60° , следовательно → равносторонний и поэтому
BD = AB = 5 см .
Сечение BDD₁B₁ . Площадь сечения: Sсеч = BD*DD₁ =AB*DD₁
Из Sбок =(4*AB)*DD₁ ⇒AB*DD₁ = Sбок/4 =240/4 = 60 (см²)
Sсеч = 60 (см²) .
-------
Пусть O и O₁ точки пересечения диагоналей оснований ABCD и A₁B₁C₁D₁ соответственно плоск(A₁AC) ≡ плоск(A₁AO)
плоск(A₁AC) ⊥ плоск(DBB₁ ), т.к. плоск(A₁AC) происходит через AO , которая перпендикулярна BD и OO₁. Очевидно OO₁ || BB₁