Если О - центр исходной окружности, а М - середина дуги BC, то ∠BCM=∠BOM/2 (т.к. угол вписанный в окр. равен половине дуги, на которую он опирается), ∠MCA=∠MOC/2 (т.к. угол между касательной и хордой из точки касания равен половине угла, который стягивает хорда). Т.к. ∠BOM=∠COM (у нас М - середина дуги BC), то ∠BCM=∠MCA. Т.е. MC - биссектриса угла BCA. Аналогично, BM - биссектриса угла ABC. Т.е. середина дуги лежит на пересечении биссектрис треугольника ABC, т.е. совпадает с центром вписанной окружности.
Для начало нам нужно посчитать периметр известного нам многоугольника, это 4+5+7+8+9=33 см. Два многоугольника подобны, если их соответственные углы равны, а соответственные стороны пропорциональны. Чтобы узнать стороны подобного многоугольника нужно: 1)Периметр подобного многоугольника(99 см) разделить на периметр известного многоугольника(мы посчитали, что это 33 см), то есть 99/33=3, а это означает, что периметр подобного многоугольника в три раза больше, чем периметр первоначального. 2)Поскольку периметр подобного многоугольника в три раза больше, чем периметр первоначального, значит, стороны подобного тоже в три раза больше: 4:5:7:8:9(нужно всё умножить на три)=12:15:21:24:27 ответ: стороны подобного многоугольника относятся как 12:15:21:24:27
Два многоугольника подобны, если их соответственные углы равны, а соответственные стороны пропорциональны.
Чтобы узнать стороны подобного многоугольника нужно:
1)Периметр подобного многоугольника(99 см) разделить на периметр известного многоугольника(мы посчитали, что это 33 см), то есть 99/33=3, а это означает, что периметр подобного многоугольника в три раза больше, чем периметр первоначального.
2)Поскольку периметр подобного многоугольника в три раза больше, чем периметр первоначального, значит, стороны подобного тоже в три раза больше:
4:5:7:8:9(нужно всё умножить на три)=12:15:21:24:27
ответ: стороны подобного многоугольника
относятся как 12:15:21:24:27