Начерти тетраэдр SABC. Проведи высоту SO. Точка О является центром вписанной и описанной окружности, поскольку в тетраэдре все основания - правильные треугольники. Тебе нужно найти высоту тетраэдра. ЕЕ найдем из треугольника SOB, где ОВ - радиус описанной окружности. И находится он по формуле R = a/√3, где а - сторона треугольника. ОВ = 8/√3 см. По теореме пифагора высота OF = √ (64 - 64/3) = 8√2/√3 см Ортогональной проекцией боковой грани является равнобедреннй треугольник, основание которого 8 см, а высота равна высоте тетраэдра. Поэтому чертишь отрезок 8 см и со средины отрезка проводишь перпендикуляр равный высоте тетраэдра, которую мы вычислили. Соединяешь вершины и почучаешь ортогональную проекцию. ЕЕ площадь: S = 1/2 * 8 * 8√2/√3 = 32√2/√3 см^2 Если не нравятся корни в ответах, то калькулятор, хотя обычно ответ принято оставлять в такой форме.
ОВ = 8/√3 см.
По теореме пифагора высота OF = √ (64 - 64/3) = 8√2/√3 см
Ортогональной проекцией боковой грани является равнобедреннй треугольник, основание которого 8 см, а высота равна высоте тетраэдра.
Поэтому чертишь отрезок 8 см и со средины отрезка проводишь перпендикуляр равный высоте тетраэдра, которую мы вычислили. Соединяешь вершины и почучаешь ортогональную проекцию.
ЕЕ площадь:
S = 1/2 * 8 * 8√2/√3 = 32√2/√3 см^2
Если не нравятся корни в ответах, то калькулятор, хотя обычно ответ принято оставлять в такой форме.
АН = НС = АС/2 = 6 см
ΔАВН: ∠АНВ = 90°, по теореме Пифагора
АВ = √(АН²+ ВН²) = √(36 + 9) = √45 = 3√5 см
Полупериметр треугольника АВС:
р = (12 + 2 · 3√5) / 2 = 6 + 3√5
Площадь треугольника АВС можно вычислить двумя
S = 1/2 · AC · BH
S = pr, где r - радиус вписанной в треугольник окружности.
Приравняем правые части формул:
1/2 · AC · BH = pr
1/2 · 12 · 3 = (6 + 3√5) · r
r = 18 / (6 + 3√5) = 6 / (2 + √5) см
Чтобы избавиться от иррациональности в знаменателе, домножим числитель и знаменатель на (√5 - 2):
r = 6 · (√5 - 2) / ((√5 - 2)·(√5 + 2)) = 6 · (√5 - 2) / 1 = 6 · (√5 - 2) см
Диаметр:
d = 2r = 12(√5 - 2) см