Дано:
OD=15см
OB=9см
CD=25см
АВ || CD
а) Доказать, что
∆ AOB подобен ∆ COD
б) Найти AB
а) Рассмотрим ∆ AOB и ∆ COD:
1)∠AOB=∠DOC т.к. они вертикальные
2) если АВ || CD, то ∠ODC=∠ABD т.к. они на крест лежащие
⇒делаем вывод что ∆ AOB подобен ∆ COD (по первому признаку подобия треугольников или же по 2 углам)
б) Если ∆ AOB подобен ∆ COD, то AB/DC=AO/OC=OB/OD⇒
AB/25=9/15⇒AB=(25*9)/15=15см
ответ: AB=15см; ∆ AOB подобен ∆ COD.
кек)
Дано:
OD=15см
OB=9см
CD=25см
АВ || CD
а) Доказать, что
∆ AOB подобен ∆ COD
б) Найти AB
а) Рассмотрим ∆ AOB и ∆ COD:
1)∠AOB=∠DOC т.к. они вертикальные
2) если АВ || CD, то ∠ODC=∠ABD т.к. они на крест лежащие
⇒делаем вывод что ∆ AOB подобен ∆ COD (по первому признаку подобия треугольников или же по 2 углам)
б) Если ∆ AOB подобен ∆ COD, то AB/DC=AO/OC=OB/OD⇒
AB/25=9/15⇒AB=(25*9)/15=15см
ответ: AB=15см; ∆ AOB подобен ∆ COD.
кек)