Пусть дана окружность с центром в т.О. Проведем прямую, которая пересечет окружность в т. А и т.В, т.о. АВ - хорда, АВ = 12 см. Т.к. т.А и В лежат на окружности, то ОА = ОВ = 10 см - это радиусы окружности. Получим треугольник АОВ - равнобедренный, АВ - основание. Проведем ОК ⊥ АВ, ОК - расстояние от центра до хорды. Значит ОК - медиана , АК = ВК = 12 : 2 = 6 см. Рассмотрим треугольник ОКА - прямоугольный и найдем ОК используя теорему Пифагора.
ОК² = ОА² - АК² , ОК² = 100 - 36 = 64 см², ОК = корень из 64 = 8 см
ответ:8 см
Объяснение:
Пусть дана окружность с центром в т.О. Проведем прямую, которая пересечет окружность в т. А и т.В, т.о. АВ - хорда, АВ = 12 см. Т.к. т.А и В лежат на окружности, то ОА = ОВ = 10 см - это радиусы окружности. Получим треугольник АОВ - равнобедренный, АВ - основание. Проведем ОК ⊥ АВ, ОК - расстояние от центра до хорды. Значит ОК - медиана , АК = ВК = 12 : 2 = 6 см. Рассмотрим треугольник ОКА - прямоугольный и найдем ОК используя теорему Пифагора.
ОК² = ОА² - АК² , ОК² = 100 - 36 = 64 см², ОК = корень из 64 = 8 см
ответ: 8см
пусть треугольник abc :
ab =18 см ;
вписанный прямоугольник mnef ( m∈[ac] , n∈ [bc] , e , f ∈ [ ab] ) .
a) mf : mn = 2 : 5 . mf =2x ; mn =5x ; p =2(mf+mn) =2(2x+5x) =14x.
в δafm : af =mf =2x ;
в δben : be =ne =mf =2x ;
af +fe +eb =18 см ; * * *fe=mn =5x * * *
2x +5x+2x =18⇒ x =2(см)
p =14x =14*2 см =28 см.
б) mf : mn = 5 : 2. mf =5x ; mn =2x ; p =2(mf+mn) =2(5x+2x) =14x.
5x +2x+5x =18⇒12x =18⇔x=1,5 (см) .
p =14x=14*1,5 см = 21 см .
ответ : 28 см , 21 см .