На рисунке АВС -прямоленейный треугольник ,DBC- равносторонний треугольник . Найди переметр треугольника АВD, если угол BAD = ЕСD =30° , DE =4,2 см ,АВ =11 см
Диаметр окружности О2 =7,5*2=15 = АВ, сумма диаметров окружностей О1 и О2=(4,5*2)+(2,5*2)=14=СД, т.е.СД - хорда и лежит выше или ниже диаметра (пусть ниже)проводим перпендикуляр О2К на СД, СД=КД=14/2=7, треугольникО2СК , О2С- радиус=7,5, О2К=корень(О2С в квадрате-СК в квадрате) =корень( 56,25-49)=корень7,25, точкаМ -касание окружностей О1 и О3, СМ=диметр окружностиО1=9, О1К=СК-СО1=7-4,5=2,5, треугольник О1О2К, О1О2=корень(О1К в квадрате+О2К в квадрате)=корень (6,25+7,25)=корень13,5=3,67, sin углаО1О2К=О1К/О1О2=2,5/3,67=0,681=угол 43 град, КМ=О1М-О1К=4,5-2,5=2, КО3=КМ+МО3=2+2,5=4,5, треугольник КО2О3, О2О3=корень(КО3 в квадрате +О2К в квадрате)=корень(20,25+7,25) =5,24, sin угла КО2О3=КО3/О2О3=4,5/5,24=0,8588=угол 59 град, уголО1О2О3=59+43=102
А(- 1; 6), В(- 1; - 2)
Найдем длину диаметра по формуле расстояния между точками:
АВ = √((x₁ - x₂)² + (y₁ - y₂)²) = √((- 1 + 1)² + (6 + 2)²) = √(0 + 64) = 8.
Тогда радиус равен:
R = AB/2 = 4
Координаты центра найдем как координаты середины отрезка АВ:
x₀ = (x₁ + x₂)/2, y₀ = (y₁ + y₂)/2
x₀ = (- 1 - 1)/2 = - 1, y₀ = (6 - 2)/2 = 2
О(- 1; 2)
Уравнение окружности:
(x - x₀)² + (y - y₀)² = R²
(x + 1)² + (y - 2)² = 16
Уравнение прямой, проходящей через центр окружности и параллельной оси Ох:
у = 2.
Уравнение прямой, проходящей через центр окружности и параллельной оси Оу:
х = - 1.