На рисунке ,б изобраден равнобедренный треугольник авс основание которого является отрезаом вс.точки т,р,и о лежат на сторонах ав,ас и вс соответственно ,причем тр||вс,ро||ав.известно ,что ат: ав=1: 3,тр=4см и
АВС - равнобедренный тр-ник, АВ=ВС=40 см, ВМ=4√91 см, АР и СК - биссектрисы. Найти КР. Тр-ки АРС и АКС равны, так как ∠АСК=∠САР, ∠КАС=∠РСА, сторона АС - общая, значит АК= РС, значит КР║АС, значит треугольники АВС и КВР подобны. В прямоугольном тр-ке АВМ АМ²=АВ²-ВМ²=40²-(4√91)²=144, АМ=12 см, АС=2АМ=24 см. Коэффициент подобия тр-ков АВС и КВР равен: k=АВ/КВ. По теореме биссектрис в тр-ке АВС с биссектрисой СК: ВС/АС=КВ/АК ⇒ КВ=ВС·АК/АС. АК=АВ-КВ, значит КВ=ВС(АВ-КВ)/АС. КВ=40(40-КВ)/24, 24КВ=1600-40КВ, 64КВ=1600, КВ=25 см, Подставим это значение в формулу коэффициента подобия: k=АВ/КВ=40/25=1.6 Исходя из подобия тр-ков АВС и КВР КР=АС/k=24/1.6=15 см - это ответ.
Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам.
AA1/A1B= AC/BC
C1C/BC1= AC/AB
AB=BC => AA1/A1B= C1C/BC1
Если прямые отсекают на секущих пропорциональные отрезки, то прямые параллельны.
AC||A1C1
△ABC~△A1BC1 (углы при основаниях равны как соответственные при AC||A1C1)
k= AC/A1C1 =AB/A1B
AH=√(AB^2 -BH^2) =√(1600 -16*91) =12
Высота в равнобедренном треугольнике является медианой.
AC=2AH =12*2 =24
AA1/A1B= AC/BC =24/40 =0,6
AB/A1B= (AA1 +A1B)/A1B =AA1/A1B +1 =1,6
A1C1= AC/k =24/1,6 =15
Тр-ки АРС и АКС равны, так как ∠АСК=∠САР, ∠КАС=∠РСА, сторона АС - общая, значит АК= РС, значит КР║АС, значит треугольники АВС и КВР подобны.
В прямоугольном тр-ке АВМ АМ²=АВ²-ВМ²=40²-(4√91)²=144,
АМ=12 см, АС=2АМ=24 см.
Коэффициент подобия тр-ков АВС и КВР равен: k=АВ/КВ.
По теореме биссектрис в тр-ке АВС с биссектрисой СК: ВС/АС=КВ/АК ⇒ КВ=ВС·АК/АС.
АК=АВ-КВ, значит КВ=ВС(АВ-КВ)/АС.
КВ=40(40-КВ)/24,
24КВ=1600-40КВ,
64КВ=1600,
КВ=25 см, Подставим это значение в формулу коэффициента подобия: k=АВ/КВ=40/25=1.6
Исходя из подобия тр-ков АВС и КВР КР=АС/k=24/1.6=15 см - это ответ.