1. ΔBAD=ΔDCB - прямоугольные (по условию), равны по катету AB=CD и гипотенузе BD - общая сторона.
2. ΔКТМ=ΔКТN - прямоугольные (по условию), равны по двум катетам MT=TN (по условию), KT - общий катет.
3. ΔPKS=ΔRKS - прямоугольные, так как ∠PKS=∠RKS (по условию) - смежные, значит ∠PKS=∠RKS=90°. Треугольники равны по общему катету KS и острому углу ∠KPS=∠KRS (по условию).
4. ΔERF=ΔESF - прямоугольные (по условию), равны по общей гипотенузе EF и острому углу ∠REF=∠SEF (по условию).
5. ΔSPM=ΔTKM - прямоугольные (по условию), равны по катету SP=KT (по условию) и гипотенузе SM=TM (по условию).
ΔRPM=ΔRKM - прямоугольные, равны по катету РМ=КМ (из равенства ΔSPM=ΔTKM) и общей гипотенузе RM.
1. ΔBAD=ΔDCB - прямоугольные (по условию), равны по катету AB=CD и гипотенузе BD - общая сторона.
2. ΔКТМ=ΔКТN - прямоугольные (по условию), равны по двум катетам MT=TN (по условию), KT - общий катет.
3. ΔPKS=ΔRKS - прямоугольные, так как ∠PKS=∠RKS (по условию) - смежные, значит ∠PKS=∠RKS=90°. Треугольники равны по общему катету KS и острому углу ∠KPS=∠KRS (по условию).
4. ΔERF=ΔESF - прямоугольные (по условию), равны по общей гипотенузе EF и острому углу ∠REF=∠SEF (по условию).
5. ΔSPM=ΔTKM - прямоугольные (по условию), равны по катету SP=KT (по условию) и гипотенузе SM=TM (по условию).
ΔRPM=ΔRKM - прямоугольные, равны по катету РМ=КМ (из равенства ΔSPM=ΔTKM) и общей гипотенузе RM.
Подробнее - на -
Объяснение:
cm=2 см
Объяснение:
AM=AK+KP+PM;
AM=7 cm
AK=PM, потому что это равнобедреная трапеция, так как AB=CM;
KP=BC-как противоположные стороны прямоугольника BCPK;
возьмем ak за х; составим уравнение:
5+2х=7;
2х=7-5
2х=2
х=1;
ak=pm=1см;
рассмотрим треугольники abk и cmp:
ab=cm
ak=pm
<A=<M=60
треуголники равны за двумя сторонами и углом между ними.
так как, bk и cp-высоты, значит <cpm=<bak=90
cума всех углов треугольника = 180 гр.,
<bak+<bka+<kba=180
60+90+x=180
x=30
если угол 30 градусов лежит напротив катета, значит катет равняется половине гипотенузы;
ab=2ak
ab=2*1
ab=cm=2 см