Объяснение:
во вложениях
Впишем квадрат в решетку.
(Красные треугольники равны по двум катетам => синие гипотенузы равны, углы A, B, C, D прямые.)
Треугольники KCM и DCM равны по катету и гипотенузе.
По условию в треугольнике AKD медиана равна половине стороны - угол AKD прямой.
=> Точка K находится в узле решетки.
Теперь видно, что треугольники KBD и KAD имеют равные высоты и основания - и равные площади.
Медианы KO и KM делят их пополам.
Треугольники AMK и ABK также имеют равные высоты и основания - и равные площади.
Таким образом площадь KOD равна 1/5 площади ABD и 1/10 площади квадрата.
Объяснение:
во вложениях
Впишем квадрат в решетку.
(Красные треугольники равны по двум катетам => синие гипотенузы равны, углы A, B, C, D прямые.)
Треугольники KCM и DCM равны по катету и гипотенузе.
По условию в треугольнике AKD медиана равна половине стороны - угол AKD прямой.
=> Точка K находится в узле решетки.
Теперь видно, что треугольники KBD и KAD имеют равные высоты и основания - и равные площади.
Медианы KO и KM делят их пополам.
Треугольники AMK и ABK также имеют равные высоты и основания - и равные площади.
Таким образом площадь KOD равна 1/5 площади ABD и 1/10 площади квадрата.