На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.
Если один из углов при боковой стороне трапеции прямой, то второй при той же стороне тоже прямой. Здесь угол В=А = 90° Поскольку от угла С отнимается диагональю прямой угол, остается угол 45°, угол САD тоже 45°, как накрестлежащий, и Δ АВС - равнобедренный прямоугольный. Отсюда сторона ВС=АВ=5 см. Опустим из угла С перпендикуляр СМ на АD. Получим АМ=ВС=5см, а треугольник СМD равнобедренный, т.к. в нем угол при С прямой, угол D=45°(180°-135°) и потому МD=ВМ=5 см АD=АМ+МD=10 см Средняя линия трапеции ½(АD+ВС)=(10+5):2=7,5 см
Поскольку от угла С отнимается диагональю прямой угол, остается угол 45°, угол САD тоже 45°, как накрестлежащий, и Δ АВС - равнобедренный прямоугольный. Отсюда сторона ВС=АВ=5 см.
Опустим из угла С перпендикуляр СМ на АD. Получим АМ=ВС=5см, а треугольник СМD равнобедренный, т.к. в нем угол при С прямой, угол D=45°(180°-135°) и потому
МD=ВМ=5 см
АD=АМ+МD=10 см
Средняя линия трапеции
½(АD+ВС)=(10+5):2=7,5 см