На рисунке изображен график функции, заданный уравнением у=х³-6х а) покажите на координатной плоскости множество решений неравенства у<х³-6х б) какая из точек А(3;5) или В(-3;-2) принадлежит множеству решений неравенства из пункта а. СОР
Пусть одна часть высоты = 2а, другая = 5а, тогда вся высота 7а. Меньший отрезок - радиус вписанной окружности, r=2a. Свяжем стороны через площадь: С одной стороны, S=bh/2, где b - основание, h - высота; С другой - S=p*r, где p - половина периметра, r - радиус вписанной окружности, следовательно bh/2=pr; b*7a/2=28*2a b=16 (см) - основание треугольника. Вписанная окружность делит основание на 2 равных отрезка касательных. Тогда, боковая сторона разделится на два отрезка касательных - один из них будет равен половине основания, другой нужно найти; следовательно, y+y+y+y+x+x=56 4y+2x=56 x+2y=28; y=8 x=28-16=12 (см), значит, боковые стороны = 12+8=20 (см). ответ: 16 см; 20 см; 20 см.
Свяжем стороны через площадь:
С одной стороны, S=bh/2, где b - основание, h - высота;
С другой - S=p*r, где p - половина периметра, r - радиус вписанной окружности, следовательно
bh/2=pr;
b*7a/2=28*2a
b=16 (см) - основание треугольника. Вписанная окружность делит основание на 2 равных отрезка касательных. Тогда, боковая сторона разделится на два отрезка касательных - один из них будет равен половине основания, другой нужно найти; следовательно,
y+y+y+y+x+x=56
4y+2x=56
x+2y=28; y=8
x=28-16=12 (см), значит, боковые стороны = 12+8=20 (см).
ответ: 16 см; 20 см; 20 см.
Докажите, что радиус окружности, вписанной в прямоугольный треугольник с катетами а и b и гипотенузой с. вычисляется по формуле r=(a+b-c):2
--------
Вписанная окружность делит стороны треугольника на отрезки, равные от вершины до точек касания.
Отрезки касательных, проведенных из одной точки к окружности, равны.
Если катеты равны a и b, то расстояние от вершины угла до точки касания равно:
на катете а =a-r,
на катете b=b-r.
Гипотенуза с равна сумме отрезков касательных из острых углов до точек касания.
с=a-r+b-r= a+b-2r
c-(a+b)=-2r домножим обе части уравнения на -1
r=(a+b-c):2, что и требовалось доказать.