Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
а) Чтобы точка B была симметрична точке A относительно оси x, необходимо заменить координату y точки A на противоположное число, а координату x оставить точно такой же, значит a = 4; b = 3.
б) Чтобы точка B была симметрична точке A относительно оси y, необходимо заменить координату x точки A на противоположное число, а координат y оставить точно такой же, значит a = -4; b = -3.
в) Чтобы точка B была симметрична точке A относительно начала координат, необходимо заменить координаты y и x точки A на противоположные числа, значит a = -4; b = 3.
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
а) Чтобы точка B была симметрична точке A относительно оси x, необходимо заменить координату y точки A на противоположное число, а координату x оставить точно такой же, значит a = 4; b = 3.
б) Чтобы точка B была симметрична точке A относительно оси y, необходимо заменить координату x точки A на противоположное число, а координат y оставить точно такой же, значит a = -4; b = -3.
в) Чтобы точка B была симметрична точке A относительно начала координат, необходимо заменить координаты y и x точки A на противоположные числа, значит a = -4; b = 3.