На рисунке изображён план участка, по которому будет производиться застройка участка и разработка земли. Участок имеет форму вытянутого прямоугольника, въезд и выезд через единственные ворота. От ворот можно попасть в дом по выложенному плиткой участку. Слева от ворот располагается клумба круглой формы, справа — огородик с корнеплодами и пряностями. Перед воротами выложена площадка из тротуарной плитки, ею же вымощены некоторые дорожки на участке. Гараж на схеме отмечен цифрой 7. Вокруг теплицы отведено место под разведение цветов. Баня на участке находится слева от дома, и к ней можно пройти по тротуарной плитке. На участке есть электричество и центральный водопровод. Все площадки и дорожки на участке выложены одной и той же плиткой, и в каждой клетке схемы помещается по 4 плитки, в соответствии со схемой. Размер стороны клетки на плане — 0,8 м. Рядом с теплицей высажены цветы. Дом обозначен цифрой 1.
Сколько метров составит самое короткое расстояние от жилого дома до теплицы? ответ дай в метрах, при необходимости округли до десятых. В поле для ответа внеси только число, без единиц измерения и других дополнительных символов.
Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать. может правильно )
Номер 1. длина стороны а= 15 см радиус описанной окружности R=5√3сторона (а) и ДВА радиуса (R) образуют равнобедренный треугольник - где основание (а) и боковые стороны (R)радиус вписанной окружности ( r ) в этом треугольнике - это высота тогда по теореме Пифагора r^2 = R^2 - (a/2)^2r = √ ((5√3)^2 - (15/2)^2 ) =5√3/2 ответ: 5√3/2
Номер 2.
Обозначим стороны квадрата и шестиугольника а4 и а6 соответственно, а радиус окружности R. Тогда a4=2R*sin(180/4)=2R*sin45= sqrt(2)*R a6=2R*tg(180/6)= 2R*tg30= sqrt(3)*2*R/3a6/a4= sqrt(6)/3
длина стороны а= 15 см радиус описанной окружности R=5√3сторона (а) и ДВА радиуса (R) образуют равнобедренный треугольник - где основание (а) и боковые стороны (R)радиус вписанной окружности ( r ) в этом треугольнике - это высота тогда по теореме Пифагора r^2 = R^2 - (a/2)^2r = √ ((5√3)^2 - (15/2)^2 ) =5√3/2
ответ: 5√3/2
Номер 2.
Обозначим стороны квадрата и шестиугольника а4 и а6 соответственно, а радиус окружности R.
Тогда
a4=2R*sin(180/4)=2R*sin45= sqrt(2)*R
a6=2R*tg(180/6)= 2R*tg30= sqrt(3)*2*R/3a6/a4= sqrt(6)/3