Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
Рассмотрим сечение ЦИЛИНДРА Это прямоугольный РАВНОБЕДРЕННЫЙ треуголльник ABC (так как углы равны по 45 град. ) т.е AC=BC .По теореме Пифагора найдем эти стороны . оставим уравнение Х^2(в квадрате)+ Х^2(в квадрате)=64 ИЗ этого следует
2Х^2(в квадрате)=64 , Х^2(в квадрате)=32 , Х=32(из под коря )=4*3(из под корня )
1 А так так ВС-это и есть высота . то BC=4*3(из под корня )
2 а AC=d(диаметру) и = 4*3(из под корня ). А r(радиус )=2/d . И из этого следует
AC=4*3(из под корня)/2= 2*3(из под корня)-ЭТО РАДИУС
ответ высота BC=4*3(из под корня ), а ралиус (r)=2*3(из под корня)
Рассмотрим сечение ЦИЛИНДРА Это прямоугольный РАВНОБЕДРЕННЫЙ треуголльник ABC (так как углы равны по 45 град. ) т.е AC=BC .По теореме Пифагора найдем эти стороны . оставим уравнение Х^2(в квадрате)+ Х^2(в квадрате)=64 ИЗ этого следует
2Х^2(в квадрате)=64 , Х^2(в квадрате)=32 , Х=32(из под коря )=4*3(из под корня )
1 А так так ВС-это и есть высота . то BC=4*3(из под корня )
2 а AC=d(диаметру) и = 4*3(из под корня ). А r(радиус )=2/d . И из этого следует
AC=4*3(из под корня)/2= 2*3(из под корня)-ЭТО РАДИУС
ответ высота BC=4*3(из под корня ), а ралиус (r)=2*3(из под корня)