На рисунке изображен прямоугольный параллелепипед ABCDABCD основание которого квадрат ABCD . Вычислите градусную меру угла между прямыми DC1 и B1C, если AB = 2 см , AA1 = 4 см .
Решение: 1) Рассмотри основание. Это квадрат АВСD, т.е АВ=ВС=СD=АD В нем диагональ АС= 2V2 см. В этом квадрате рассмотри треугольник АВС. Угол В=90 град., АВ=ВС, значит по теореме Пифагора: АС^2 = AB^2 + BC^2 = 2AB^2 => AB^2 = AC^2 / 2 = (2V2)^2 / 2 = 4 см^2 => AB = V4 = 2 см - сторона квадрата основания 2) Точка S равноудалена от каждой стороны квадрата. Это значит, что расстояния AS=BS=CS=DS и проекция точки S на основание АВСD будет находиться в центре квадрата АВСD в точке О. 3) Теперь рассмотри треугольник АОS. Угол АОS= 90 град. OS = 3 см АО = 1/2 AC = 1/2*(2V2) = V2 см По теореме Пифагора: AS=AO^2 + OS^2 = (V2)^2 + 3^2 = 2+9=11 см. 4) Расстояние от точки S до стороны АВ измеряется перпендикуляром SK, проведенным из точки S к стороне АВ. Точка К лежит на АВ и АК=КВ=AB/2=2/2=1 cм Для этого рассмотри еще один треугольник - ASB. В нем: SA=SB= 11 см АВ =2 см => SA^2 = AK^2 + SK^2 => SK^2 = SA^2 - AK^2 = 11^1 - 1^2 = 121-1=120 SK=V120=2V30 см
Данный треугольник - прямоугольный. Прямоуй угол образован катетами 5 и 12. Это можно подтвердить по теореме косинусов, а можно вспомнить, что стороны 5,12, 13 - стороны прямоугольного треугольника из Пифагоровой троийки.
Обозначим вершины треугольника А,В,С.
С - прямой угол.
АВ -гипотенуза =13 см
АС=12см
ВС=5 см
Угол А - меньший острый угол.
А - основание перпендикуляра
М- второй конец перпендикуляра.
Расстояние от точки до прямой измеряется отрезком, проведенным из точки к прямой и перпедникулярным ей.
Расстояние от основания А перпендикуляра до противоположной стороны - а именно меньшего катета ВС треугольника- равно большему его катету АС и равно 12 см
Расстояние от верхнего конца М перпендикуляра равно гипотенузе МС прямоугольного треугольника АМС, катетами которого являются АС исходного треугольника и перпендикуляр АМ.
Решение:
1) Рассмотри основание. Это квадрат АВСD, т.е АВ=ВС=СD=АD
В нем диагональ АС= 2V2 см.
В этом квадрате рассмотри треугольник АВС. Угол В=90 град., АВ=ВС, значит по теореме Пифагора:
АС^2 = AB^2 + BC^2 = 2AB^2 =>
AB^2 = AC^2 / 2 = (2V2)^2 / 2 = 4 см^2 =>
AB = V4 = 2 см - сторона квадрата основания
2) Точка S равноудалена от каждой стороны квадрата. Это значит, что расстояния AS=BS=CS=DS и проекция точки S на основание АВСD будет находиться в центре квадрата АВСD в точке О.
3) Теперь рассмотри треугольник АОS.
Угол АОS= 90 град.
OS = 3 см
АО = 1/2 AC = 1/2*(2V2) = V2 см
По теореме Пифагора:
AS=AO^2 + OS^2 = (V2)^2 + 3^2 = 2+9=11 см.
4) Расстояние от точки S до стороны АВ измеряется перпендикуляром SK, проведенным из точки S к стороне АВ. Точка К лежит на АВ и
АК=КВ=AB/2=2/2=1 cм
Для этого рассмотри еще один треугольник - ASB. В нем:
SA=SB= 11 см
АВ =2 см =>
SA^2 = AK^2 + SK^2 =>
SK^2 = SA^2 - AK^2 = 11^1 - 1^2 = 121-1=120
SK=V120=2V30 см
Данный треугольник - прямоугольный. Прямоуй угол образован катетами 5 и 12. Это можно подтвердить по теореме косинусов, а можно вспомнить, что стороны 5,12, 13 - стороны прямоугольного треугольника из Пифагоровой троийки.
Обозначим вершины треугольника А,В,С.
С - прямой угол.
АВ -гипотенуза =13 см
АС=12см
ВС=5 см
Угол А - меньший острый угол.
А - основание перпендикуляра
М- второй конец перпендикуляра.
Расстояние от точки до прямой измеряется отрезком, проведенным из точки к прямой и перпедникулярным ей.
Расстояние от основания А перпендикуляра до противоположной стороны - а именно меньшего катета ВС треугольника- равно большему его катету АС и равно 12 см
Расстояние от верхнего конца М перпендикуляра равно гипотенузе МС прямоугольного треугольника АМС, катетами которого являются АС исходного треугольника и перпендикуляр АМ.
МС²=АС²+АМ²=144+256=400
МС=√400=20 см