В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
JakeNJacks
JakeNJacks
27.05.2023 18:28 •  Геометрия

На рисунке изображен сектор круга с центром в точке О и радиусом, равным 4 см. OD = 2 см и угол DOC = 45°. Найдите площадь закрашенной области.​

Показать ответ
Ответ:
ekaterina2206
ekaterina2206
06.11.2020 05:49

ответ: Sпол=40,2см²

Объяснение: обозначим вершины пирамиды АВСД с высотой ДО. В основании правильной 3 -угольной пирамиды лежит равносторонний треугольник. Рассмотрим ∆АДО. Он прямоугольный в котором АО и ДО - катеты, а АД- гипотенуза. < дАо=30°, а катет лежащий напротив него равен половине гипотенузы. Пусть катет ДО=х, тогда АД=2х. Составим уравнение используя теорему Пифагора:

(2х)²-х²=2²

4х²-х²=4

3х²=4

х²=4/3

х=√(4/3)=2/√3см, тогда АД=2√3×2=4√3см

Сторона "a"треугольника вписанного в окружность вычисляется по формуле радиуса: R=a/√3

a/√3=2

a=2√3

Стороны основания =2√3см

Площадь равносотороннего треугольника вычисляется по формуле:

Sосн=а²√3/4=

=(2√3)²×√3/4=4×3√3/4=3√3см²

Проведём апофему ДК и получим прямоугольный треугольник АДК, в котором АК и ДК - катеты, а АД- гипотенуза. ДК делит сторону АС пополам, поскольку боковая грань - это равнобедренный треугольник, поэтому АК=СК=2√3/2=√3см. Найдём ДК по теореме Пифагора:

ДК²=АД²-АК²=(4/√3)²-(√3)²=

=16×3-3=48-3=45; ДК=√45=3√5см

Найдём площадь боковой грани по формуле: S=½×AC×ДК=½×2√3×3√5=3√15см²

Таких граней 3, поэтому:

Sбок.пов=3√15×3=9√15см²

Sпол=Sосн+Sбок.пов=3√3+9√15=

=3×1,7+9×3,9=5,1+35,1=40,2см²


Плоскость боковой грани правильной треугольной пирамиды составляет угол 30 с плоскостью основания. Р
0,0(0 оценок)
Ответ:
Lulera
Lulera
28.09.2021 15:56

r=7.5 cm

Объяснение:

Пусть дан прямоугольный треугольник АВС, в котором угол В-прямой.  Окружность с центром в точке О, которая лежит на гипотенузе касается катета ВС в точке Т и проходит через точку А. Гипотенуза АС пересекает окружность в точке К.  К находится между О и А.

Известно, что катеты АВ=12 и ВС=16.

Проведем радиус ОТ.  Так как Т точка касания , то треугольник ОТС-прямоугольный и угол Т -прямой.

Косинус угла С равен:

cosC=BC/AC

Найдем АС по т. Пифагора из треугольника АВС:

АС=sqr(AB^2+BC^2)=sqr(144+256)=sqr400=20

cosC=16/20=4/5

sinC =sqr(1-cosC^2)=sqr(1-16/25)=sqr(9/25)=3/5

ОС=ОТ/sinC=r*5/3=OK+KC

5/3*r=r+KC

KC=2/3*r

AC=20=2r+2/3*r

8*r/3=20

8r=60

r=60/8

r=7.5 cm

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота