Значит, мы уже знаем, что периметр прямоугольника равен 20 см, а одна его сторона 8
Следовательно, по свойству прямоугольника ВС = АД = 8, значит АВ=СД= 20 - 8 +8) = 4
АВ=СД=2 см
Теперь ищем площадь прямоугольника АВСД
Площадь АВСД = ВС * АВ = 8 * 2 = 16
Мы знаем, по условию, что площади прямоугольника и квадрата равны
Площадь квадрата находится очень просто, надо одну его сторону возвести в квадрат.
Обозначим квадрат, как НПРО, следовательно
площадь квадрата будет = НП в квадрате. Площадь нам уже известна, она равна 16, а единственное число, которое при возведение в квадрат даёт 16, это число 4
Значит, сторона НП = 4
У квадрата все стороны равны, следовательно, что бы найти периметр квадрата, нам нужно просто сложить все четыре стороны.
a) Пусть Середины ребер AC и BC - Соответственно D и E .
DE - очевидно 3 , поэтому надо доказать что апофемы пирамиды MD и ME тоже равны трем.
Рассмотрим треугольник AME . Он по условию прямоугольный с прямым углом M ( MA перпендикулярно MBC )
Высота MO Проецируется в центр основания ABC ( пирамида правильная )
AE = 6√3/2 = 3√3
AO=2√3
EO = √3
пусть высота MO - h
тогда по теореме Пифагора
h^2+(√3)^2+h^2+(2√3)^2=(3√3)^2
Откуда h=√6
ME^2 = h^2+3
ME=3
Доказано.
б) Пусть С - начало координат
Ось X - CA
Ось Y - перпендикулярно X в сторону B
Ось Z - перпендикулярно ABC в сторону M
Координаты Точек
D(3;0;0)
E(3/2;3√3/2;0)
M(3;√3;√6)
Уравнение плоскости DEM
ax+by+cz+d=0 подставляем координаты точек
3a+d=0
3a/2+3√3b/2+d=0
3a+√3b+√6c+d=0
Пусть d= -6 Тогда a=2 b=2/√3 c= - 2/√6
2x+ 2y/√3 - 2z/√6 - 6 =0
k=√ (4+4/3+4/6) = √6
Нормализованное уравнение
2x/√6+ 2y/(√3√6) - 2z/(√6√6) - 6/√6 =0
Расстояние от С (начала координат) до Плоскости DEM Равно
6/√6 = √6
Обозначим прямоугольник, как АВСД
Значит, мы уже знаем, что периметр прямоугольника равен 20 см, а одна его сторона 8
Следовательно, по свойству прямоугольника ВС = АД = 8, значит АВ=СД= 20 - 8 +8) = 4
АВ=СД=2 см
Теперь ищем площадь прямоугольника АВСД
Площадь АВСД = ВС * АВ = 8 * 2 = 16
Мы знаем, по условию, что площади прямоугольника и квадрата равны
Площадь квадрата находится очень просто, надо одну его сторону возвести в квадрат.
Обозначим квадрат, как НПРО, следовательно
площадь квадрата будет = НП в квадрате. Площадь нам уже известна, она равна 16, а единственное число, которое при возведение в квадрат даёт 16, это число 4
Значит, сторона НП = 4
У квадрата все стороны равны, следовательно, что бы найти периметр квадрата, нам нужно просто сложить все четыре стороны.
Периметр квадрата = 4 + 4+ 4+ 4 = 16
Периметр квадрата равен 16
ответ: 16