Возьмем точки А и В так, чтобы XKNA и XLMB были параллелограммами и продлим XY за точку Y на свою длину до точки С (см. рис). Треугольник ANY равен треугольнику BMY по двум сторонам и углу между ними (AN=XK=XL=BM, NY=MY и ∠ANY=∠BMY как внутренние накрест лежащие, т.к. АN||KL||MB и MN - секущая). Значит AY=BY, т.е. AXBC - параллелограмм. Тогда ∠KVX=∠AXY=∠XCB, ∠LWX=∠BXC, BC=XA=KN и BX=LM, а т.к. по условию LM<KN, то BX<BС. Т.к. в любом треугольнике (в том числе XCB) напротив меньшей стороны лежит меньший угол, то ∠XCB<∠BXC, а значит и ∠KVX<∠LWX.
СК - перпендикуляр к плоскости α, проходящей через гипотенузу треугольника. Тогда СК = 1,2 см - расстояние от вершины С до плоскости.
СН - высота треугольника, проведенная к гипотенузе.
СН ⊥ АВ, КН - проекция СН на плоскость α, тогда и КН ⊥ АВ по теореме, обратной теореме о трех перпендикулярах.
∠СНК - линейный угол двугранного угла между плоскостью треугольника и плоскостью α - искомый.
ΔАВС прямоугольный, с катетами 3 и 4, египетский, значит
АВ = 5 см.
СН = АС·ВС / АВ = 3 · 4 / 5 = 12/5 = 2,4 см
ΔСКН: ∠СКН = 90°
sin∠CHK = CK / CH = 1,2 / 2,4 = 1/2
∠CHK = 30°