Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. 1) Обозначим расстояние от В до плоскости - ВС, от М до плоскости - МН. АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой. Отрезки, перпендикулярные плоскости , параллельны. Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны. Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒ ВС:МН=5:2 МН=2•(12,5:5)=5 м Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м. –––––––––––––––––––––––––––––––––––––– 2)Пусть наклонные будут: ВС=а, ВА=а+6 ВН- расстояние от общего конца В до плоскости. Т.к. это расстояние общее, ВН⊥ плоскости, то из прямоугольного ∆ АВН ВН²=АВ²-АН² из прямоугольного ∆ ВСН ВН²=ВС²-НС²⇒ АВ²-АН²=ВС²-НС² (а+6)²-17²=а²-7² ⇒ решив уравнение, получим 12а=204 а=17 см ВС=17 см АВ=17+6=23 см ––––––––––––––––––––– 3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. Т.к. обе вертикальные, то они параллельны. Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м, ∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). ответ - 5 м.
1. 15 см.
2. 32 см, 40 см.
3. 34 см.
4. ???
5. 34 см.
6. 14 см.
Объяснение:
1. Отрезки соединяющие середины сторон треугольника являются его средними линиями и равны половине стороны ей параллельной.
Получим треугольник А1В1С1.
Р(АВС)=8+10+12=30 см.
Р(А1В1С1)=Р(АВС)/2=30/2=15 см.
***
2. MN - средняя линия трапеции. MN=(ВС+AD)/2=36;
Пусть ВС=4х. Тогда AD=5x.
(4x+5x)/2=36;
9x=72;
x=8.
ВС=4х=4*8=32 см.
AD=5x=5*8=40 см.
Проверим:
MN=(32+40)/2=72/2=36 см. Всё верно!
***
3. В трапецию можно вписать окружность, если сумма оснований равна сумме его боковых сторон.
АВ+CD=BC+AD=P/2.
BC+AD=P/2;
5+12=P/2;
17=P/2;
P=17*2=34 см.
***
4. ???
***
5. ∠BAC=∠DAC- AC — биссектриса .
∠BCA=∠DAC (как внутренние накрест лежащие при AD ∥ BC и секущей AC). Значит, ∠BAC=∠BCA ; треугольник ABC — равнобедренный с основанием AC. АВ=CD=8 см.
Р(АВСD)=8+10+8+8=34 см.
***
6. Если в трапеции диагонали перпендикулярны, то ее высота равна средней линии. ВЕ=MN=(BC+AD)/2.
BC+AD=2MN=2*10 =20 см .
Высота H=10 см.
Р(ABCD)=48 см.
Р=2AB+ВС+AD.
2AB=48-20=28.
АВ=CD=28/2=14 см.
1) Обозначим расстояние от В до плоскости - ВС,
от М до плоскости - МН.
АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой.
Отрезки, перпендикулярные плоскости , параллельны.
Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые,
угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны.
Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒
ВС:МН=5:2
МН=2•(12,5:5)=5 м
Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м.
––––––––––––––––––––––––––––––––––––––
2)Пусть наклонные будут:
ВС=а, ВА=а+6
ВН- расстояние от общего конца В до плоскости.
Т.к. это расстояние общее, ВН⊥ плоскости, то
из прямоугольного ∆ АВН
ВН²=АВ²-АН²
из прямоугольного ∆ ВСН
ВН²=ВС²-НС²⇒
АВ²-АН²=ВС²-НС²
(а+6)²-17²=а²-7²
⇒ решив уравнение, получим
12а=204
а=17 см
ВС=17 см
АВ=17+6=23 см
–––––––––––––––––––––
3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м.
Т.к. обе вертикальные, то они параллельны.
Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м,
∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат).
ответ - 5 м.