1. Описанная около данной нам правильной пирамиды сфера в сечении по диагонали основания пирамиды (квадрат) - это описанная около равнобедренного треугольника АМС окружность. Сторона треугольника АС это диагональ квадрата и равна 6√2. Стороны АМ и СМ - ребра пирамиды =5. Есть формула радиуса описанной около равнобедренного треугольника окружности: Ro=a²/√[(2a)²-b²] , где а=АМ=МС=5, b=АС=6√2. Подставляем и получим Ro=25/√(100-72) = 25/√28. Или Ro=25√7/14. Тогда площадь сферы равна Sc=4πR² =4π*25²*7/14²=17500*π/196 ≈ 280,36. Округлим до целых и получим Sc ≈ 280.
2. Угол между прямой BD и плоскостью DMC - это угол между этой прямой и ее проекцией на плоскость DMC.Опустим из точки О, принадлежащей прямой ВD перпендикуляр на плоскость грани DMC. Это будет перпендикуляр ОН на апофему МЕ. Тогда проекцией прямой DО на плоскость грани DMC будет прямая DH, а угол ОDН - искомый угол. ОН - перпендикуляр из прямого угла МОЕ прямоугольного треугольника МОЕ и равен МО*ОЕ/МЕ (по свойствам этого перпендикуляра). МО - высота пирамиды и равна по Пифагору √(МС²-ОС²)=√(25-18)=√7. (ОС=0,5*АС=3√2). МЕ - апофема грани DMC равна по Пифагору √(ОЕ²+МО²)=√(9+7)=4. Тогда ОН=МО*ОЕ/МЕ=√7*3/4. В прямоугольном треугольнике ОНD (<OHD-прямой) синус угла ОDН равен ОН/ОD (OD - гипотенуза) =(√7*3/4)/3√2 = √7/4√2 = √14/8. Угол равен arcSin(√14/8) ≈ arcSin(0,4677). Или ≈28°.
Тк это прямоугольный треугольник, а катет вс равен половине гипотенузы дв, угол д равен 30 градусам( угол лежащий против катета, равному половине гипотенузы, равен 30 градусам). Рассмотрим треугольник дкс. Угол д= 30 градусам, угол дкс- 90градусам, тк ск высота. Найдем угол дск. Он будет равен: 180-(30+90)= 60градусам. Угол с прямой, тогда если угол дск 60 градусов, то угол вск-30. Рассмотрим треугольник вск. Угол вкс- прямой, угол ксв=30 градусам. Найдем угол в. Он будет равен : 180-(30+90)= 60 градусам. Если нужна проверка, то сумма двух острых углов в прямоугольном треугольнике равна 90 градусам. Все сходится:) ответ: 60,30,90 градусов
треугольника окружности: Ro=a²/√[(2a)²-b²] , где а=АМ=МС=5, b=АС=6√2. Подставляем и получим Ro=25/√(100-72) = 25/√28. Или Ro=25√7/14.
Тогда площадь сферы равна Sc=4πR² =4π*25²*7/14²=17500*π/196 ≈ 280,36.
Округлим до целых и получим Sc ≈ 280.
2. Угол между прямой BD и плоскостью DMC - это угол между этой прямой и ее проекцией на плоскость DMC.Опустим из точки О, принадлежащей прямой ВD перпендикуляр на плоскость грани DMC. Это будет перпендикуляр ОН на апофему МЕ. Тогда проекцией прямой DО на плоскость грани DMC будет прямая DH, а угол ОDН - искомый угол.
ОН - перпендикуляр из прямого угла МОЕ прямоугольного треугольника МОЕ и равен МО*ОЕ/МЕ (по свойствам этого перпендикуляра).
МО - высота пирамиды и равна по Пифагору √(МС²-ОС²)=√(25-18)=√7. (ОС=0,5*АС=3√2).
МЕ - апофема грани DMC равна по Пифагору √(ОЕ²+МО²)=√(9+7)=4.
Тогда ОН=МО*ОЕ/МЕ=√7*3/4. В прямоугольном треугольнике ОНD (<OHD-прямой) синус угла ОDН равен ОН/ОD (OD - гипотенуза) =(√7*3/4)/3√2 = √7/4√2 = √14/8.
Угол равен arcSin(√14/8) ≈ arcSin(0,4677). Или ≈28°.