На рисунке отрезки АК, ВМ, СМ и DK - биссектрисы углов параллелограмма ABCD. Отрезки ВМ и АК пересекаются в точке N, а отрезки DK и СМ - в точке Р, при этом МК = 4. Найдите длину отрезка NP.
Чтобы найти периметр треугольника, надо сначала найти длину каждой стороны треугольника, в этом нам формула квадрата расстояния между двумя точками в пространстве, или можно взять формулу модуля вектора, кому как удобно...
PΔABC ≈ 27.91
Объяснение:
Чтобы найти периметр треугольника, надо сначала найти длину каждой стороны треугольника, в этом нам формула квадрата расстояния между двумя точками в пространстве, или можно взять формулу модуля вектора, кому как удобно...
AB² = (x₁ - x₂)² + (y₁ - y₂)² + (z₁ - z₂)² ;
AB² = (2 - 3)² + (4 + 5)² + (-2 - 1)² = (-1)² + 9² + (-3)² = 1+81+9 = 1
AB = √91 ≈ 9,54;
BC² = (3 + 2)² + (-5 - 3)² + (1 - 5)² = 5² + (-8)² + (-4)² = 25+64+16 = 105
BC = √105 ≈ 10,25;
AC² = (2 + 2)² + (4 - 3)² + (-2 - 5)² = 4² + 1² + (-7)² = 16+1+49 = 66
AC = √66 ≈ 8,12
PΔABC ≈ 9,54 + 10,25 + 8,12 ≈ 27.91
Sabc=48 cm²
Объяснение:
Пусть треугольник АВС и АС основание =12 см.
Пусть ВМ -высота, проведенная к основанию.
Пусть О центр вписанной окружности - находится на высоте ВМ, так как треугольник АВС равнобедренный.
Тогда АМ=МС= 12:2=6 см
АО- биссектриса угла О, так как центр вписанной окружности находится в точке пересечения биссектрис треугольника ( то есть на биссектрисе АО).
Тогда tg∡OAM = OM/AM= 3/6=1/2=0.5
Найдем tg∡ A= 2*tg∡OAM/(1-tg²∡AM)=
2*0.5/(1-1/4)=1/3*4=4/3
tg∡ A=4/3
=> BM/MA=4/3
BM=4/3*6 =8
Sabc=(AC*BM)/2= 12*8/2=48 cm²