На рисунке прямая a лежит на плоскости π. На плоскости выбрана точка K, такая, что AO ⊥ a , AK ⊥ π. Точка L лежит на прямой a и OK = OL. Если KL =3√6 см, ∠AOK = 30°, найди AO
Назовем треугольник АВС(угол А прямой, угол С=60 градусов).
Дано:
Угол С=60градусов
СЕ-биссектриса
ЕС=АВ-1
Найти: СЕ
РАссмотрим треугольник АСЕ. Угол АСЕ=30 градусов, т.к. биссектриса уделит угол на два равных угла. Сторона, лежащая против угла в 30 градусов, равна половине гипотенузы. Поэтому ЕА=ЕС\2
Вернемся к треугольнику АВС. т.к. угол С равен 60 градусов, а угол А прямой, угол В=30 градусов. А значит треугольник ВСЕ равнобедренный. ЕС=ЕВ
Вариант решения. Обозначим пирамиду МABCD, М- вершина пирамиды. О - центр основания, МН - апофема. ---------- Примем сторону основания равной 2а. Проведем КН через центр основания параллельно ВС. ОН⊥АВ ⇒ МН⊥АВ ( по т. о 3-х перпендикулярах), ⇒ ∠MHO=60° ∆ МОН - прямоугольный. МН высота Δ МАВ КН=ВС=2а, ОН=КН:2=а Высота МО=ОН•tg60°=a√3 Апофема МН=ОН:cos60°=2a
Площадь полной поверхности пирамиды S=S₁(осн)+S₂(бок) S₁=(2a)²=4a² S₂= 4•S∆MAB=4•MH•AB:2=8a² S(полн)=12а² 12а²=108⇒ а²=9⇒ а=3⇒ АВ=2а=6 см Формула объема пирамиды V=S•h:3 S=36 V=36•3√3:3=36√3 см³
1.
Назовем треугольник АВС(угол А прямой, угол С=60 градусов).
Дано:
Угол С=60градусов
СЕ-биссектриса
ЕС=АВ-1
Найти: СЕ
РАссмотрим треугольник АСЕ. Угол АСЕ=30 градусов, т.к. биссектриса уделит угол на два равных угла. Сторона, лежащая против угла в 30 градусов, равна половине гипотенузы. Поэтому ЕА=ЕС\2
Вернемся к треугольнику АВС. т.к. угол С равен 60 градусов, а угол А прямой, угол В=30 градусов. А значит треугольник ВСЕ равнобедренный. ЕС=ЕВ
ЕС=АВ-1
ЕС=АЕ+ЕВ-1
ЕС=ЕС\2 + ЕС - 1
3ЕС-2=2ЕС
ЕС=2
ответ: 2 см
Обозначим пирамиду МABCD, М- вершина пирамиды. О - центр основания, МН - апофема.
----------
Примем сторону основания равной 2а.
Проведем КН через центр основания параллельно ВС.
ОН⊥АВ ⇒ МН⊥АВ ( по т. о 3-х перпендикулярах), ⇒
∠MHO=60°
∆ МОН - прямоугольный.
МН высота Δ МАВ
КН=ВС=2а,
ОН=КН:2=а
Высота МО=ОН•tg60°=a√3
Апофема МН=ОН:cos60°=2a
Площадь полной поверхности пирамиды
S=S₁(осн)+S₂(бок)
S₁=(2a)²=4a²
S₂= 4•S∆MAB=4•MH•AB:2=8a²
S(полн)=12а²
12а²=108⇒ а²=9⇒
а=3⇒
АВ=2а=6 см
Формула объема пирамиды
V=S•h:3
S=36
V=36•3√3:3=36√3 см³