У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
1).Противоположные углы параллелограмма равны: одна пара одинаковых углов - острые углы, другая пара одинаковых противоположных углов - тупые углы. Сумма одного острого и одного тупого угла в параллелограмме равна 180°.
Сумма всех четырех углов параллелограмма равна 360° .
Если сумма двух углов равняется 168°, значит углы противоположные и при этом острые. Противоположные углы равны между собой, значит оба противоположных угла- острые- 168 : 2 = 84°.
1).Противоположные углы параллелограмма равны: одна пара одинаковых углов - острые углы, другая пара одинаковых противоположных углов - тупые углы. Сумма одного острого и одного тупого угла в параллелограмме равна 180°.
Сумма всех четырех углов параллелограмма равна 360° .
Если сумма двух углов равняется 168°, значит углы противоположные и при этом острые. Противоположные углы равны между собой, значит оба противоположных угла- острые- 168 : 2 = 84°.
Значит другие противоположные углы - тупые - 180° - 84° = 96°.
(или так (360-168) : 2 = 96° ).
3).Сумма одного острого и одного тупого угла в параллелограмме равна 180°.
Задачу решим с уравнения, где х° - острый угол А (т. к. он меньший, значит он острый);
Тогда: 5х° - угол В (т. к. он в пять раз больше угла А);
Составим и решим уравнение:
х + 5х = 180°;
6х = 180°;
х = 180 / 6;
х = 30° - угол A = углу C (так как они противоположны );
5х = 5 * 30° = 150° - угол B = углу D (так как они противоположны). Это и есть тупые углы.
ответ: 150°