Дано: треугольник АВС, угол А = 90°, BD - медиана треугольник KLM, угол K = 90°, LN - медиана AB = KL, BD = LN Доказать: треугольник АВС = треугольнику KLM Доказательство: Рассмотрим треугольники ABD и KLN. Эти треугольники равны по катету и гипотенузе: AB=KL, BD=LN (по условию) В равных треугольниках стороны и углы соответственно равны, следовательно, AD = KN Рассмотрим треугольники ABC и KLM. В этих треугольниках BD и LN являются медианами, значит, AD=DC и KN=NM Но, как мы только что доказали, AD = KN Значит, AC = KM По условию AB = KL Следовательно, треугольники ABC и KLM равны по двум катетам, что и требовалось доказать
Рассмотрим основание:в образованном треугольнике MON: OM = ON как радиусы, следовательно, треугольник равнобедренный, угол MON = 60 градусов по условию, углы OMN и ONM равны как углы равнобедренного треугольника по основанию, то есть <OMN = <ONM = (180-60)/2 = 120/2 = 60 градусов. Все углы треугольника равны по 60 градусов, следовательно, треугольник - правильный, и OM = ON = MN = r. Найдем высоту ОК: из прямоугольного треугольника OKN: из теоремы Пифагора: OK^2 = ON^2 - KN^2, ON = r, KN = r/2, поскольку в правильном треугольнике высота является и медианой, OK^2 = r^2 - (r/2)^2 = r^2 - r^2/4 = 3r^2/4, OK = корень из 3 умножить на r поделить на 2. Рассмотрим треугольник CON: из теоремы Пифагора: CO^2 = CN^2 - ON^2, из вычислений на картинке CO = корень из (l^2 - r^2) поделить на два. Рассмотрим треугольник СОК: за теоремой Пифагора: CK^2 = CO^2 + OK^2, из вычислений СК = корень из (4l^2 - r^2) поделить на 2. Площадь образовавшегося сечения - это площадь треугольника CMN, которая равна стороне, умноженной на опущенную к ней высоту разделить на 2: S = CK*MN/2. S = (r*корень из ( 4l^2 - r^2)/8. Аналогично по первому решению, во втором случае углы OMN и ONM = (180 - 90)/2 = 45 градусов. Тогда по теореме синусов: MN/sin90 = ON/sin45, MN = корень из 2 умножить на r. Из треугольника CON: CO = корень из (l^2 - r^2). Площадь второго треугольника равна r умножить на корень из (4*l^2 = 2r^2)/2) поделить на 2.
треугольник KLM, угол K = 90°, LN - медиана
AB = KL, BD = LN
Доказать: треугольник АВС = треугольнику KLM
Доказательство:
Рассмотрим треугольники ABD и KLN. Эти треугольники равны по катету и гипотенузе: AB=KL, BD=LN (по условию)
В равных треугольниках стороны и углы соответственно равны, следовательно, AD = KN
Рассмотрим треугольники ABC и KLM. В этих треугольниках BD и LN являются медианами, значит, AD=DC и KN=NM
Но, как мы только что доказали, AD = KN
Значит, AC = KM
По условию AB = KL
Следовательно, треугольники ABC и KLM равны по двум катетам,
что и требовалось доказать
Аналогично по первому решению, во втором случае углы OMN и ONM = (180 - 90)/2 = 45 градусов. Тогда по теореме синусов: MN/sin90 = ON/sin45, MN = корень из 2 умножить на r. Из треугольника CON: CO = корень из (l^2 - r^2). Площадь второго треугольника равна r умножить на корень из (4*l^2 = 2r^2)/2) поделить на 2.