На рисунке с || d, - секущая, 2 = 105°. Найдите углы 1 и 3. d
2. Точка О является серединой отрезков MN и EF. Докажите, что MF || | EN.
3. Через вершину С треугольника CDE с прямым углом D проведена прямая CP | DE. Найдите углы С и Е в треугольнике CDE, если Z PCE = 37°
4. В д АВС проведена биссектриса AD. Через точку D проведена прямая параллельно стороне АВ и пересекающая сторону АС в точке F. Найдите углы треугольника ADF, если 2 BAC = 720
Задача 2. На теорему косинусов: 8^2=6^2+7^2-2*6*7*cos(a).
cos(a)=(36+49-64)/84=0,25
Задача 3. Есть формула непосредственного вычисления, но я ее не помню, а где-то искать - лень. Но я могу дать решение, пусть и не самое оптимальное.
длины векторов а и в соответственно равны: а=√((-4)^2+5^2))=√(41),
b=√(5^2+(-4)^2))=√(41), расстояние между концами векторов равно √((-4-5)^2+(5+4)^2)=√(162). Вновь применяем теорему косинусов: (√(162))^2=(√(41))^2+(√(41))^2-2*√(41)*√(41)*cos(a), cos(a)=(41+41-162)/(2*41)=(-40/41).
Задача 4. Опять на теорему косинусов. PK^2=PM^2+MK^2-2*PM*MK*cos(120°),
PK=√(3^2+4^2-2*3*4*(-1/2))=√(9+16+12)=√(37).
Площадь треугольника S=(1/2)*PM*MK*sin(120°)=(1/2)*3*4*√(3)/2=3*√(3).
С другой стороны, S=PK*MN, откуда MN=S/PK=3*√(3)/√(37)=√(27/37).
Задача 2. На теорему косинусов: 8^2=6^2+7^2-2*6*7*cos(a).
cos(a)=(36+49-64)/84=0,25
Задача 3. Есть формула непосредственного вычисления, но я ее не помню, а где-то искать - лень. Но я могу дать решение, пусть и не самое оптимальное.
длины векторов а и в соответственно равны: а=√((-4)^2+5^2))=√(41),
b=√(5^2+(-4)^2))=√(41), расстояние между концами векторов равно √((-4-5)^2+(5+4)^2)=√(162). Вновь применяем теорему косинусов: (√(162))^2=(√(41))^2+(√(41))^2-2*√(41)*√(41)*cos(a), cos(a)=(41+41-162)/(2*41)=(-40/41).
Задача 4. Опять на теорему косинусов. PK^2=PM^2+MK^2-2*PM*MK*cos(120°),
PK=√(3^2+4^2-2*3*4*(-1/2))=√(9+16+12)=√(37).
Площадь треугольника S=(1/2)*PM*MK*sin(120°)=(1/2)*3*4*√(3)/2=3*√(3).
С другой стороны, S=PK*MN, откуда MN=S/PK=3*√(3)/√(37)=√(27/37).